Home
Class 11
MATHS
lim(xrarr0) (ax+x cos x)/(b sinx)...

`lim_(xrarr0) (ax+x cos x)/(b sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{ax + x \cos x}{b \sin x} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit expression: \[ \lim_{x \to 0} \frac{ax + x \cos x}{b \sin x} \] ### Step 2: Factor out \( x \) from the numerator We can factor \( x \) out of the numerator: \[ \lim_{x \to 0} \frac{x(a + \cos x)}{b \sin x} \] ### Step 3: Divide numerator and denominator by \( x \) Next, we divide both the numerator and the denominator by \( x \): \[ \lim_{x \to 0} \frac{a + \cos x}{b \frac{\sin x}{x}} \] ### Step 4: Use the limit property of \( \frac{\sin x}{x} \) We know that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Thus, we can substitute this into our limit: \[ \lim_{x \to 0} \frac{a + \cos x}{b \cdot 1} = \frac{a + \cos x}{b} \] ### Step 5: Evaluate the limit as \( x \to 0 \) Now we can evaluate the limit by substituting \( x = 0 \): \[ \frac{a + \cos(0)}{b} = \frac{a + 1}{b} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{ax + x \cos x}{b \sin x} = \frac{a + 1}{b} \]

To solve the limit \( \lim_{x \to 0} \frac{ax + x \cos x}{b \sin x} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit expression: \[ \lim_{x \to 0} \frac{ax + x \cos x}{b \sin x} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)x sec x

If lim_(xrarr0) (x(1+acos x)-bsin x)/(x)=1 , then a-b, are

lim_(xrarr0)((1-cos x)/x^2)

lim_(xrarr0)(x^3 log x)

lim_(xrarr0) (sin 3 x)/(2x)

lim_(xrarr0) (ax+b)/(cx+1)

lim_(xrarr0) (cos ec x -cot x)

lim_(xrarr0) (x cos x-sinx)/(x^(2)sin x)

lim_(xrarr0)(cos 2x-1)/(cosx-1)

Evaluate: lim_(xrarr0) (tan x-sin x)/(x^(3))