Home
Class 11
MATHS
lim(x to pi/2) (tan2x)/(x-(pi)/(2))...

`lim_(x to pi/2) (tan2x)/(x-(pi)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{\tan(2x)}{x - \frac{\pi}{2}} \), we can follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{2} \) First, we substitute \( x = \frac{\pi}{2} \) into the limit expression: \[ \tan(2 \cdot \frac{\pi}{2}) = \tan(\pi) = 0 \] \[ x - \frac{\pi}{2} = \frac{\pi}{2} - \frac{\pi}{2} = 0 \] This gives us the indeterminate form \( \frac{0}{0} \). **Hint:** When you get a \( \frac{0}{0} \) form, it indicates that you can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. ### Step 3: Differentiate the numerator and denominator Now we differentiate the numerator and denominator separately: - The numerator \( f(x) = \tan(2x) \): \[ f'(x) = \sec^2(2x) \cdot \frac{d}{dx}(2x) = \sec^2(2x) \cdot 2 = 2 \sec^2(2x) \] - The denominator \( g(x) = x - \frac{\pi}{2} \): \[ g'(x) = 1 \] ### Step 4: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to \frac{\pi}{2}} \frac{2 \sec^2(2x)}{1} \] ### Step 5: Substitute \( x = \frac{\pi}{2} \) again Now we substitute \( x = \frac{\pi}{2} \) into the new limit expression: \[ = 2 \sec^2(2 \cdot \frac{\pi}{2}) = 2 \sec^2(\pi) \] Since \( \sec(\pi) = \frac{1}{\cos(\pi)} = -1 \), we have: \[ \sec^2(\pi) = (-1)^2 = 1 \] Thus, the limit evaluates to: \[ = 2 \cdot 1 = 2 \] ### Final Answer \[ \lim_{x \to \frac{\pi}{2}} \frac{\tan(2x)}{x - \frac{\pi}{2}} = 2 \] ---

To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{\tan(2x)}{x - \frac{\pi}{2}} \), we can follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{2} \) First, we substitute \( x = \frac{\pi}{2} \) into the limit expression: \[ \tan(2 \cdot \frac{\pi}{2}) = \tan(\pi) = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x to(pi)/(2))(tan 2 x)/( x - (pi)/(2))

(lim)_(x->pi/2)(tan2x)/(x-pi/2)

(lim)_(x->pi/2)(tan2x)/(x-pi/2)

Evaluate : lim_(x to pi//2) ( x tan x - (pi)/(2) sec x)

Lim_( x to pi/2) (1-sin x)/((pi-2x)^(2))

Lim_(x to pi/2) (1-sin x)/((pi/2-x)^(2))

Evaluate the following limits : Lim_(x to pi/4) (1- tan x)/(x - pi/4 )

Lim_(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

Evaluate the following limit : Lim_(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

Evaluate the following limits: Lim_( x to pi/2 )(1-sin x)/((pi/2-x)^(2))