Home
Class 11
MATHS
Find (lim)(x->1)f(x),w h e r ef(x)=[x^2-...

Find `(lim)_(x->1)f(x),w h e r ef(x)=[x^2-1, xlt=1-x^2-1, x >1`

Text Solution

Verified by Experts

Here `f(x)={{:(x^(2)-1,xle1),(-x^(2)-1,xgt1):}`
at x=1
LHL=`underset(xrarr1^(-))"lim"f(x)`
`=underset(hrarr0)"lim"f(1-h)`
`=underset(hrarr0)"lim"(1-h)^(2)-1`
`=(1-0)^(2)-1=0`
RHL `=underset(xrarr1^(+))"lim"f(x)`
`=underset(hrarr0)"lim"-(1+h)^(2)-1`
`=-(1+0)^(2)-1=-2`
`because` LHL `ne` RHL
`therefore underset(xrarr1)"lim"f(x)` does not exist
Let `1+h=x`
`rArr 1+hrarr1`
`rArr hrarr0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

Find (lim)_(x->1)f(x),""w h e r e""f(x)=[x^2-1, xlt=1-x^2-1, x >1

Find (lim)_(x->1)f(x) ,where f(x)={(x^2-1, xlt=1),(-x^2-1, x >1):}

Find lim_(xrarr0)f(x)a n d(lim)_(x->1)f(x),""""w h e r e""""f(x)=[2x+3, xlt=0 3(x+1), x >0

Evaluate ("lim")_(x->0)f(x),\ w h e r e\ f(x)={(|x|)/x ,\ x!=0 , 0,\ x=0

Find lim_(x to 1) f(x) , where f(x) = {{:(x + 1, x != 1),(0, x = 1):}}

Evaluate the following integrals: int_0^9f(x)dx ,w h e r ef(x)={sinx,0 lt=xlt=pi//2 1,pi/2lt=xlt=3 e^(x-3),3lt=xlt=9

f(x) is the integral of (2sinx-sin2x)/(x^3),x!=0. Find lim_(x->0)f^(prime)(x)[w h e r ef^(prime)(x)=(df)/(dx)]

Evaluate the following integral: int_2^4f(x)dx ,\ w h e r e\f(x)={7x+3,\ if\ 1lt=xlt=3 , w h e r e\f(x)=8x \ if\ 3lt=xlt=4

Evaluate the following integral: int_0^9f(x)dx ,\ w h e r e\ f(x)=sinx,\ 0lt=xlt=pi//2 w h e r e\ f(x)= 1 ,pi/2lt=xlt=3 w h e r e\ f(x)=e^(x-3),\ 3lt=xlt=9

If the function f(x) satisfies (lim)_(x->1)(f(x)-2)/(x^2-1)=pi, evaluate (lim)_(x->1)f(x)