Home
Class 11
MATHS
Suppose f(x)=\ {a+b x ,\ x<1 4,\ x=1b-a ...

Suppose `f(x)=\ {a+b x ,\ x<1 4,\ x=1b-a x ,\ x >1` and if `(lim)_(x->1)f(x)=f(1)` . What are possible values of `a\ a n d\ b ?`

Text Solution

Verified by Experts

`f(x)={{:(a+bx,xlt1),(4,x=1),(b-ax,xgt1):}`
at x=0
LHL ` =underset(xrarr0^(-))"lim"f(x)`
`underset(hrarr0)"lim"f(0-h)`
`=underset(hrarr0)"lim"(h)/(|-h|)`
`=underset(hrarr0)"lim"(h)/(-h)=underset(hrarr0)"lim"(-1)=-1`
Let ` 0-h=x`
`rArr 0-hrarr0`
`rArr hrarr0`
RHL`=underset(xrarr0^(+))"lim"f(x)`
`=underset(hrarr0)"lim"f(0+h)`
`=underset(hrarr0)"lim"( h)/(|h|)` ltbr. `=underset(hrarr0)"lim"(h)/(h)= underset(hrarr0)"lim"(1)=1`
`because LHLneRHL`
`therefore underset(xrarr0)"lim"f(x)` does not exist
Let `0+h=x`
`rArr0+hrarr0`
`rArr hrarr0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

Suppose f(x)={(a+bx, x 1):} and if lim_(xto1) f(x)=f(1) , what are the values of a and b?

Suppose f(x) =[a+b x , x 1] and lim f(x) where x tends to 1 f(x) = f(1) then value of a and b?

If f(x)=x^(2)+2x-2 and if f(s-1)=1 , what is the smallest possible value of s ?

Suppose f is a real function satisfying f(x+f(x))=4f(x) and f(1)=4. Then the value of f(21) is a). 16 b). 21 c). 64 d). 105

If f(x)=ax+b and the equation f(x)=f^(-1)(x) be satisfied by every real value of x, then

If f(x)={xsin(1/x) ,\ x!=0, then (lim)_(x->0)f(x) equals a. 1 b . 0 c. -1 d. none of these

let f(x)=-x^3+(b^3-b^2+b-1)/(b^2+3b+2) if x is 0 to 1 and f(x)=2x-3 if x if 1 to 3 .All possible real values of b such that f (x) has the smallest value at x=1 are

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

If f(x)=|x+1|-1 , what is the minimum value of f(x) ?

If f(x)=ax^(2)+bx+c and f(x+1)=f(x)+x+1 , then the value of (a+b) is __