Home
Class 11
MATHS
If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1...

If ` f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):}`
for what value (s) of a does `lim_(xrarra) f(x)` exists?

Text Solution

AI Generated Solution

To determine the values of \( a \) for which the limit \( \lim_{x \to a} f(x) \) exists, we need to analyze the function defined as: \[ f(x) = \begin{cases} |x| + 1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ |x| - 1 & \text{if } x > 0 ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(cos[x]", "xle0),(|x|+a", "xlt0):}. Then find the value of a, so that lim_(xto0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x.

If f(x) is defined as f(x)={{:(2x+3,x,le 0),(3x+3,x,ge 0):} then evaluate : lim_(xrarr0) f(x) "and" lim_(xrarr1) f(x)

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

If f(x) is defined as follows: f(x)={{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.

If F (x) = {{:(-x^(2) + 1, x lt 0),(0,x = 0),(x^(2) + 1,x gt = 0):} , .then lim_(x to 0) f(x) is

If f(x)={{:(x",",0lexle1),(x+a",",xgt1):} then

Let f(x) be a function defined by f(x) = {{:((3x)/(|x|+2x),x ne 0),(0,x = 0):} Show that lim_(x rarr 0) f(x) does not exist.

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

Let f(x){:{(1+sinx", "xlt0),(x^(2)-x+1ge0):} Then

If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt1),(x^(2)-2x-2",",1lexlt2),(x-5",",xge2):} Then the value of lim_(xrarr0) g(f(x))