Home
Class 11
MATHS
If f(x) =[m x^2+n , x<0n x+m , xlt=xlt=1...

If `f(x) =[m x^2+n , x<0n x+m , xlt=xlt=1n x^3+m , x >1`. For what integers m and n does both `(lim)_(x->1)f(x)dot`

Text Solution

Verified by Experts

at x=0
`LHL=underset(xrarr0^(-))"lim"f(x)`
`=underset(hrarr0)"lim"f( 0-h)`
`=underset(hrarr0)"lim"m( 0-h)^(2)+n=n`
RHL`=underset(xrarr0^(+))"lim"f(x)`
`=underset(hrarr0)"lim"f(0+h)`
`=underset(hrarr0)"lim"n(0+h)+m=m`
`because underset(xrarr0)"lim"f(x)` exists.
Let `0- h=x`
`rArr0-hrarr0`
`rArr hrarr0`
Let `0+h=x`
`rArr 0+hrarr0`
`rArr hrarr0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

If f(x) =[m x^2+n , x 1 . For what integers m and n does both (lim)_(x->1)f(x)dot

Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] is the greatest integer not greater than xdot Then (A) ("lim")_(x->5)f(x)=1 (B) ("lim")_(x->5)f(x)=0 (C) ("lim")_(x->5)f(x) does not exist. (D)none of these

If f(x) = n , where n is an integer such that n le x lt n +1 , the range of f(x) is

Let f(x)=x^(m/n) for x in R where m and n are integers , m even and n odd and 0

If ("lim")_(x->a)[f(x)+g(x)]=2a n d ("lim")_(x->a)[f(x)-g(x)]=1, then find the value of ("lim")_(x->a)f(x)g(x)dot

Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0, n gt0 and. If lim_(xrarr1+) g(x)=-1 , then

If (x-a)^(2m) (x-b)^(2n+1) , where m and n are positive integers and a > b , is the derivative of a function f then-

If (x-a)^(2m) (x-b)^(2n+1) , where m and n are positive integers and a > b , is the derivative of a function f then-

If m and n are positive integers and f(x) = int_1^x(t-a )^(2n) (t-b)^(2m+1) dt , a!=b , then

If f(x) = [x] – [x/4] , x ∈ R, where [x] denotes the greatest integer function, then : (1) lim f(x) (x→4-)exists but lim f(x) (x→4+) does not exist. (2) Both lim f(x) (x→4-) and lim f(x) (x→4+) exist but are not equal. (3) lim f(x) (x→4+) exists but lim f(x) (x→4-) does not exist. (4) f is continuous at x = 4.