Home
Class 11
MATHS
For the function f(x)=(x^(100))/(100)+(...

For the function
`f(x)=(x^(100))/(100)+(x^(99))/(99)+...+(x^2)/2+x+1`
. Prove that `f^(prime)(1)=100f^(prime)(0)`.

Text Solution

Verified by Experts

Here
`f(x)=(x^(100))/(100)+(x^(99))/(99)+.....+(x^(2))/(2)+x+1`
`f(x) =(d)/(dx)[(x^(100)/(100)+(x^(99))/(99)+.....+(x^(2))/(2)+x+1]`
`=(1)/(100)(d)/(dx)x^(100)+(1)/(99)(d)/(dx)x^(99)`
`+......+(1)/(2)(d)/(dx)x^(2)+(d)/(dx)x+(d)/(dx)`
`=(1)/(100).100x^(99)+(1)/(99).99x^(98)`
`+....+(1)/(2)2x+1+0`
`=x^(99)+x^(98)+.....+x+1`
`rArr f(1)=1+1+.....+1+1` (upto 100 terms)=100
and `f(0)=0+0.....+0+1=1`
`therefore f(1)=100:f(1)` Hence proved.
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.1|32 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

Find the derivative of the function f(x)=2x^2+3x-5 at x = 1 . Also prove that f^(prime)(0)+3f^(prime)(-1)=0 .

If f(x)=alphax^n , prove that alpha=(f^(prime)(1))/n .

Let f(x)a n dg(x) be two differentiable functions in R a n d f(2)=8,g(2)=0,f(4)=10 ,a n dg(4)=8. Then prove that g^(prime)(x)=4f^(prime)(x) for at least one x in (2,4)dot

If f is defined by f(x)=x^2-4x+7, show that f^(prime)(5)=2f^(prime)(7/2)

If f(x)=sqrt(x^2+1),\ \ g(x)=(x+1)/(x^2+1) and h(x)=2x-3 , then find f^(prime)(h^(prime)(g^(prime)(x))) .

A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all x ,\ y in R , f(x)!=0 . Suppose that the function f(x) is differentiable at x=0 and f^(prime)(0)=2 . Prove that f^(prime)(x)=2\ f(x) .

A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all x ,\ y in R , f(x)!=0 . Suppose that the function f(x) is differentiable at x=0 and f^(prime)(0)=2 . Prove that f^(prime)(x)=2\ f(x) .