Home
Class 12
MATHS
Prove that cos ^(-1) x = 2 sin ^(-1).sq...

Prove that `cos ^(-1) x = 2 sin ^(-1).sqrt(1-x)/(2)`

Text Solution

Verified by Experts

Let `cos^(-1) x = theta`
`rArr" "x - cos theta`
R.H.S `= 2 sin sqrt((1-x)/(2)) = 2sin. sqrt((1-costheta))/(2)`
`= 2 sin ^(-1).sqrt((2 sin^(2)((theta)/(2)))/(2)) = 2 sin (sin.(theta)/(2)`)
` 2.(theta)/(2)= theta= cos^(-1) x= L.H.S`
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2a|34 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2b|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Prove that : cos^(-1) x = 2 cos^(-1) sqrt((1+x)/(2)) (ii) Prove that : tan^(-1)((cosx + sin x)/(cosx - sin x)) = (pi)/(4)+ x

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

Sove 2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Prove that : cos (2 sin^(-1) x) = 1-2x^2

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)