Home
Class 12
MATHS
solve:sin^-1x+sin^-1 2x=pi/3...

solve`:sin^-1x+sin^-1 2x=pi/3`

Text Solution

AI Generated Solution

To solve the equation \( \sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3} \), we can use the identity for the sum of inverse sine functions. Let's go through the solution step by step. ### Step 1: Use the Identity for Sine Inverses We know that: \[ \sin^{-1} a + \sin^{-1} b = \sin^{-1} \left( a \sqrt{1 - b^2} + b \sqrt{1 - a^2} \right) \] In our case, let \( a = x \) and \( b = 2x \). Therefore, we can rewrite the left-hand side: ...
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2a|34 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2b|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

Solve sin^(-1)x > -1

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

The solution of sin^(-1)x-sin^(-1)2x=pm(pi)/(3) is

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

Solve for x: sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve 2sin^(-1)x + sin^(-1) (1-x)= (pi)/(2)