Home
Class 12
MATHS
(i) If sin ^(-) x + sin ^(-1) y = pi//2...

(i) If `sin ^(-) x + sin ^(-1) y = pi//2`, then prove that : `cos^(-1) x = sin^(-1) y`
(ii) Prove that :` sin ((1)/(2) cos^(-1).(4)/(5))= (1)/sqrt(10) `
(iii) Prove that `: tan ((1)/(2) cos^(-1).(sqrt(5))/(3)) = (3-sqrt(5))/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x + tan ^(-1) x = (pi)/(2) , then prove that 2x^(2) + 1 = sqrt(5)

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-y^2) + y sqrt(1-x^2) =1 .

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

Prove that cos ^(-1) x = 2 sin ^(-1).sqrt(1-x)/(2)

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

Prove that: sin(pi/10). cos(pi/5)=1/4

Prove that : cos^(-1).(4)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11) (ii) Prove that : sin^(-1).(3)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11)

If sin^(-1)x+tan^(-1)x=(pi)/(2) , prove that : 2x^(2)+1=sqrt(5)

Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))