Home
Class 12
MATHS
Prove that : cos^(-1) x = 2 cos^(-1) sqr...

Prove that : `cos^(-1) x = 2 cos^(-1) sqrt((1+x)/(2))`
(ii) Prove that : `tan^(-1)((cosx + sin x)/(cosx - sin x)) = (pi)/(4)+ x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos ^(-1) x = 2 sin ^(-1).sqrt(1-x)/(2)

Prove that : sin cot^(-1) tan cos^(-1) x=x

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

Prove that : cos (2 sin^(-1) x) = 1-2x^2

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that: sin cos^-1 tan sec^-1 x= sqrt(2-x^2)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]