Home
Class 12
MATHS
If u= cot ^(-1) (sqrt(cos 2 theta)) -tan...

If `u= cot ^(-1) (sqrt(cos 2 theta)) -tan ^(-1)(sqrt(cos 2 theta))` , then prove that `: sin u = tan^(2) theta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=cot^(-1)sqrt(cos theta) -tan^(-1)sqrt(cos theta) then sin u=

Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , then the value of sin u is

If cos theta + sin theta =sqrt(2) cos theta prove that cos theta -sin theta =sqrt(2) sin theta

If 2 cos theta = sqrt3. prove that : 3 sin theta - 4 sin ^(3) theta =1

"If "f(theta)=tan (sin^(-1)sqrt((2)/(3+cos 2theta)))," then " fi nd f'(theta) and

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

If sin theta + cos theta =sqrt(3), then prove that tan theta + cot theta = 1 .

Prove that : sin^(2)theta+(1)/(1+tan^(2)theta)=1

If cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2))) , then the general value of theta(n in Z)

If sin theta+ cos theta = sqrt(2) cos theta, (theta ne 90^(@)) then value of tan theta is