Home
Class 12
MATHS
If sin ^(-1) (1-x)-2 sin ^(-1) x = (pi)...

If `sin ^(-1) (1-x)-2 sin ^(-1) x = (pi)/(2)` then x = ?

A

`0,(1)/(2),1`

B

`0,(1)/(2)`

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}(1-x) - 2 \sin^{-1}(x) = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \sin^{-1}(1-x) - 2 \sin^{-1}(x) = \frac{\pi}{2} \] ### Step 2: Isolate the Inverse Sine Function Rearranging the equation gives: \[ \sin^{-1}(1-x) = \frac{\pi}{2} + 2 \sin^{-1}(x) \] ### Step 3: Apply the Sine Function Now, we apply the sine function to both sides: \[ 1 - x = \sin\left(\frac{\pi}{2} + 2 \sin^{-1}(x)\right) \] ### Step 4: Use the Sine Addition Formula Using the identity \( \sin\left(\frac{\pi}{2} + \theta\right) = \cos(\theta) \): \[ 1 - x = \cos(2 \sin^{-1}(x)) \] ### Step 5: Use the Cosine Double Angle Identity We know that \( \cos(2\theta) = 1 - 2\sin^2(\theta) \). Thus: \[ 1 - x = 1 - 2\sin^2(\sin^{-1}(x)) \] Since \( \sin(\sin^{-1}(x)) = x \): \[ 1 - x = 1 - 2x^2 \] ### Step 6: Simplify the Equation Now, we can simplify: \[ -x = -2x^2 \] This leads to: \[ 2x^2 - x = 0 \] ### Step 7: Factor the Equation Factoring out \( x \): \[ x(2x - 1) = 0 \] ### Step 8: Solve for x Setting each factor to zero gives us: 1. \( x = 0 \) 2. \( 2x - 1 = 0 \) which simplifies to \( x = \frac{1}{2} \) ### Step 9: Verify Solutions We need to check which of these solutions satisfy the original equation: - For \( x = 0 \): \[ \sin^{-1}(1-0) - 2\sin^{-1}(0) = \sin^{-1}(1) - 0 = \frac{\pi}{2} \quad \text{(valid)} \] - For \( x = \frac{1}{2} \): \[ \sin^{-1}(1 - \frac{1}{2}) - 2\sin^{-1}(\frac{1}{2}) = \sin^{-1}(\frac{1}{2}) - 2 \cdot \frac{\pi}{6} = \frac{\pi}{6} - \frac{\pi}{3} = -\frac{\pi}{6} \quad \text{(not valid)} \] ### Conclusion The only valid solution is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.2|21 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2b|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

Solve sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

Solve for x: sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve 2sin^(-1)x + sin^(-1) (1-x)= (pi)/(2)

If sin^(-1)x + tan ^(-1) x = (pi)/(2) , then prove that 2x^(2) + 1 = sqrt(5)

sin^(-1)(1-x)-2sin^(-1)x=pi/2 , then x is equal to (A) 0,1/2 (B) 1,1/2 (C) 0 (D) 1/2

sin^(-1)(1-x)-2sin^(-1)x=pi/2 , then x is equal to (A) 0,1/2 (B) 1,1/2 (C) 0 (D) 1/2

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=