Home
Class 12
MATHS
If cos ^(-1)\ (x)/(a) + cos^(-1)\ (y)/(b...

If `cos ^(-1)\ (x)/(a) + cos^(-1)\ (y)/(b) = theta`, then `(x^(2))/(a^(2)) +(y^(2))/(b^(2))=?`

A

`(xy)/(ab) cos theta + cos^(2) theta`

B

`(2xy)/(ab) cos theta + cos^(2) theta`

C

`(2xy)/(ab) cos theta + sin^(2) theta`

D

`(xy)/(ab) cos theta + sin^(2) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \cos^{-1}\left(\frac{x}{a}\right) + \cos^{-1}\left(\frac{y}{b}\right) = \theta \] ### Step 1: Use the formula for the sum of inverse cosines We can use the identity for the sum of two inverse cosines: \[ \cos^{-1}(u) + \cos^{-1}(v) = \cos^{-1}(uv - \sqrt{(1-u^2)(1-v^2)}) \] Here, let \( u = \frac{x}{a} \) and \( v = \frac{y}{b} \). Thus, we have: \[ \cos^{-1}\left(\frac{x}{a}\right) + \cos^{-1}\left(\frac{y}{b}\right) = \cos^{-1}\left(\frac{xy}{ab} - \sqrt{\left(1 - \left(\frac{x}{a}\right)^2\right)\left(1 - \left(\frac{y}{b}\right)^2\right)}\right) \] ### Step 2: Set the equation equal to cos(theta) From the original equation, we can set: \[ \cos\theta = \frac{xy}{ab} - \sqrt{\left(1 - \left(\frac{x}{a}\right)^2\right)\left(1 - \left(\frac{y}{b}\right)^2\right)} \] ### Step 3: Rearranging the equation Rearranging gives us: \[ \sqrt{\left(1 - \left(\frac{x}{a}\right)^2\right)\left(1 - \left(\frac{y}{b}\right)^2\right)} = \frac{xy}{ab} - \cos\theta \] ### Step 4: Square both sides Squaring both sides results in: \[ \left(1 - \left(\frac{x}{a}\right)^2\right)\left(1 - \left(\frac{y}{b}\right)^2\right) = \left(\frac{xy}{ab} - \cos\theta\right)^2 \] ### Step 5: Expand both sides Expanding the left side: \[ 1 - \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{x^2y^2}{a^2b^2}\right) = \left(\frac{xy}{ab}\right)^2 - 2\frac{xy}{ab}\cos\theta + \cos^2\theta \] ### Step 6: Rearranging terms Rearranging gives: \[ 1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{x^2y^2}{a^2b^2} = \frac{x^2y^2}{a^2b^2} - 2\frac{xy}{ab}\cos\theta + \cos^2\theta \] ### Step 7: Canceling terms Canceling \(\frac{x^2y^2}{a^2b^2}\) from both sides results in: \[ 1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} = -2\frac{xy}{ab}\cos\theta + \cos^2\theta \] ### Step 8: Rearranging to find the desired expression Rearranging gives us: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + 2\frac{xy}{ab}\cos\theta - \cos^2\theta \] ### Step 9: Using the identity \(1 - \cos^2\theta = \sin^2\theta\) Thus, we can write: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = \sin^2\theta + 2\frac{xy}{ab}\cos\theta \] ### Final Result Therefore, the final expression we are looking for is: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = \sin^2\theta + 2\frac{xy}{ab}\cos\theta \]
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.2|21 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2b|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

If cos ^(-1) .(x)/(a)+ cos ^(-1). (y)/(b) = theta then prove that (x^(2))/(a^(2)) -(2xy)/(ab) . cos theta+ (y^(2))/(b^(2)) = sin ^(2) theta .

If cos^(-1)(x/a)+cos^(-1)(y/b)=alpha, prove that (x^2)/(a^2)-2(x y)/(a b)cosalpha+(y^2)/(b^2)=sin^2alpha

If cos^(-1)(x/a)+cos^(-1)(y/b)=alpha, prove that (x^2)/(a^2)-2(x y)/(a b)cosalpha+(y^2)/(b^2)=sin^2alpha

If cos^(-1)(x/a) + cos^(-1) (y/b) = a show that : (x^2)/(a^2) - (2xy)/(ab) cos alpha + (y^2)/(b^2) = sin^(2) alpha .

If cos^(-1)""x/a+cos^(-1)""y/b=theta , Prove that x^(2)/a^(2)-(2xy)/(ab)costheta+y^(2)/b^(2)=sin^(2)theta .

If cos ^(-1) ""(x)/(2) + cos ^(-1) "" (y)/(3) = theta, then prove that 9x ^(2) - 12 xy cos theta + 4y ^(2) = 36 sin ^(2) theta

If cos^(-1)x/a+cos^(-1)y/b=alpha, prove that (x^2)/(a^2)-2(x y)/(a b)cosalpha+(y^2)/(b^2)=sin^2alpha

If x = a cos theta and y = bcot theta, show that : (a^(2))/(x^(2)) - (b^(2))/ (y^(2)) = 1

If "cos"^(-1) x/(2)+"cos"^(-1) y/(3)=theta , then prove that 9x^(2)-12xy " cos "theta+4y^(2)=36" sin "^(2)theta

If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12xy costheta + 4y^(2) is