Home
Class 12
MATHS
Prove that cos^(-1)4/5cos^(-1)(12)/(13)=...

Prove that `cos^(-1)4/5cos^(-1)(12)/(13)=cos^(-1)(33)/(65)`

Text Solution

AI Generated Solution

To prove that \( \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right) \), we will use the identity for the sum of inverse cosines: \[ \cos^{-1}(x) + \cos^{-1}(y) = \cos^{-1}(xy - \sqrt{(1-x^2)(1-y^2)}) \] ### Step 1: Identify \( x \) and \( y \) Let: ...
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.2|21 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos^(-1)4/5+cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

Prove that cos^(-1)4/5 + cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

Prove that: cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)

Prove that cos^(-1)(4/5) + cos^(-1)((12)/(13))=cos^(-1)(33/65)

Prove that cos^(-1) (3/5)+cos^(-1) (12/13) +cos^(-1)(63/65)=pi/2

Prove that cos^(-1).(4).(5) + cos^(-1).(12)/(13) = cos^(-1).(33)/(65)

Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65))

Prove that sin^(-1)(4/5)+tan^(-1)(5/12)+cos^(-1)(63/65)=pi/2

Prove that: sin^(-1)(-4/5)=tan^(-1)(-4/3)=cos^(-1)(-3/5)-pi