Home
Class 12
MATHS
Prove thattan^(-1)((sqrt(1+x)-sqrt(1-x))...

Prove that`tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))=pi/4-1/2cos^(-1),-1/(sqrt(2))lt=xlt=1`

Text Solution

Verified by Experts

let x `=cos theta implies cos^(-1)x`
`tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))`
`tan^(-1)((sqrt(1+cos theta)-sqrt(1-costheta))/(sqrt(1+cos theta)+sqrt(1-costheta)))`
`=tan^(-1)""(sqrt(2cos^(2)""(theta)/(2))-sqrt(2sin^(2)""(theta)/(2)))/(sqrt(2cos^(2)""(theta)/(2))+sqrt(2sin^(2)""(theta)/(2)))`
`tan^(-1)((cos""(theta)/(2)-sin""(theta)/(2))/(cos""(theta)/(2)+sin""(theta)/(2)))=tan^(-1)((1-tan""(theta)/(2))/(1+tan""(theta)/(2)))`
`= tan^(-1)tan((pi)/(4)-(theta)/(2))=(pi)/(4)-(theta)/(2)`
`=(pi)/(4)-(1)/(2) cos^(-1)x=`RHS Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/(sqrt(2))lt=xlt=1

Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2cos^(-1)x ,\ -1/(sqrt(2))\ lt=x\ lt=1

Prove that: tan^(-1) {(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))} = pi/4-1/2\ cos^(-1)x

Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4-1/2. cos^(-1)x , 0

Prove that tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=pi/4+1/2cos^(-1)x^2

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

If y=tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) find (dy)/(dx)