Home
Class 12
MATHS
Prove the following: (9pi)/8-9/4sin^(-1...

Prove the following: `(9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2\ sqrt(2))/3)`

Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Prove that: (9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2sqrt(2))/3)

Prove that: (9pi)/8-9/4sin^(-1)1/3=9/4sin^(-1)(2sqrt(2))/3

Prove the following: tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)

Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

Prove the following: tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)=1/2sin^(-1)(4/5)

sin^(-1)(sin((9pi)/4))

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt(5))

Solve the following equations: sin^(-1)((3x)/5)+sin^(-1)((4x)/5)=sin^(-1)x sin^(-1)6x+sin^(-1)6sqrt(3)x=pi/2

Find the principal value of each of the following: sin^(-1)((sqrt(3)+1)/(2sqrt(2))) (ii) sin^(-1)(cos(pi/4)) (iii) sin^(-1)(tan((5pi)/4))

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)