Home
Class 12
MATHS
sin(tan^(-1)x),|x| le 1 is equal to :...

`sin(tan^(-1)x),|x| le 1` is equal to :

A

`(x)/(sqrt(1-x^(2)))`

B

`(1)/(sqrt(1-x^(2)))`

C

`(1)/(sqrt(1+x^(2)))`

D

`(x)/(sqrt(1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin(\tan^{-1} x) \) where \( |x| \leq 1 \), we can follow these steps: ### Step 1: Let \( \theta = \tan^{-1} x \) This means that \( \tan \theta = x \). **Hint:** Recognize that \( \tan^{-1} x \) gives you an angle \( \theta \) whose tangent is \( x \). ### Step 2: Construct a right triangle In a right triangle, if \( \tan \theta = \frac{\text{opposite}}{\text{adjacent}} \), we can set: - Opposite side = \( x \) - Adjacent side = \( 1 \) **Hint:** Visualize the triangle based on the definition of tangent. ### Step 3: Calculate the hypotenuse Using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{(\text{opposite})^2 + (\text{adjacent})^2} = \sqrt{x^2 + 1^2} = \sqrt{x^2 + 1} \] **Hint:** Remember that the hypotenuse is found by taking the square root of the sum of the squares of the other two sides. ### Step 4: Find \( \sin \theta \) The sine of an angle in a right triangle is given by: \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{x}{\sqrt{x^2 + 1}} \] **Hint:** Recall that sine is defined as the ratio of the length of the opposite side to the length of the hypotenuse. ### Conclusion Thus, we have: \[ \sin(\tan^{-1} x) = \frac{x}{\sqrt{x^2 + 1}} \] **Final Answer:** The value of \( \sin(\tan^{-1} x) \) is \( \frac{x}{\sqrt{1 + x^2}} \).

To solve the problem \( \sin(\tan^{-1} x) \) where \( |x| \leq 1 \), we can follow these steps: ### Step 1: Let \( \theta = \tan^{-1} x \) This means that \( \tan \theta = x \). **Hint:** Recognize that \( \tan^{-1} x \) gives you an angle \( \theta \) whose tangent is \( x \). ### Step 2: Construct a right triangle ...
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

sin (tan ^(-1)2x)

cos^(-1)(-x),absx le 1 , is equal to

If f (x) = sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f (0) is equal to :

"sin"("tan"^(-1)x) is equal to :

If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal to:

The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1) x))) is equal to

If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),cot^(-1)(pix)):}] and B=(1)/(pi) [{:(-cos^(-1)(pix), tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),-tan^(-1)(pix)):}] then A-B is equal to

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

sin(cot^(-1)(tan(cos^(-1)x))) is equal to a) x b) sqrt(1-x^2) c) 1/x d) none of these

lim _(xto0) (""^(3)sqrt(1+sin ^(2)x )- ""^(4) sqrt(1-2 tan x))/(sin x+ tan ^(2) x) is equal to: