Home
Class 12
MATHS
If sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2), t...

If `sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2)`, then `x` is equal to

A

`0,(1)/(2)`

B

`1,(1)/(2)`

C

`0`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}(1-x) - 2 \sin^{-1}(x) = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the equation to isolate \( \sin^{-1}(1-x) \): \[ \sin^{-1}(1-x) = \frac{\pi}{2} + 2 \sin^{-1}(x) \] **Hint:** When rearranging equations, always aim to isolate the term involving the inverse function. ### Step 2: Applying the Sine Function Next, we apply the sine function to both sides of the equation: \[ 1 - x = \sin\left(\frac{\pi}{2} + 2 \sin^{-1}(x)\right) \] Using the identity \( \sin\left(\frac{\pi}{2} + \theta\right) = \cos(\theta) \), we have: \[ 1 - x = \cos(2 \sin^{-1}(x)) \] **Hint:** Remember the sine and cosine identities when dealing with angles. ### Step 3: Using the Double Angle Formula Now, we can use the double angle formula for cosine: \[ \cos(2\theta) = 1 - 2\sin^2(\theta) \] Let \( \theta = \sin^{-1}(x) \), then: \[ \cos(2 \sin^{-1}(x)) = 1 - 2x^2 \] Thus, we can rewrite our equation as: \[ 1 - x = 1 - 2x^2 \] **Hint:** Familiarize yourself with trigonometric identities to simplify expressions. ### Step 4: Simplifying the Equation Now, we simplify the equation: \[ 1 - x = 1 - 2x^2 \] Subtracting 1 from both sides: \[ -x = -2x^2 \] Multiplying through by -1 gives: \[ x = 2x^2 \] **Hint:** When simplifying equations, ensure to keep the signs consistent. ### Step 5: Rearranging to Form a Quadratic Equation Rearranging gives us: \[ 2x^2 - x = 0 \] Factoring out \( x \): \[ x(2x - 1) = 0 \] **Hint:** Factoring is a useful technique for solving polynomial equations. ### Step 6: Solving for \( x \) Setting each factor to zero gives us: 1. \( x = 0 \) 2. \( 2x - 1 = 0 \) which leads to \( x = \frac{1}{2} \) **Hint:** Always check the solutions against the original equation. ### Step 7: Checking the Solutions Now we need to check both solutions in the original equation: 1. For \( x = 0 \): \[ \sin^{-1}(1-0) - 2\sin^{-1}(0) = \sin^{-1}(1) - 0 = \frac{\pi}{2} \] This is valid. 2. For \( x = \frac{1}{2} \): \[ \sin^{-1}(1 - \frac{1}{2}) - 2\sin^{-1}(\frac{1}{2}) = \sin^{-1}(\frac{1}{2}) - 2 \cdot \frac{\pi}{6} = \frac{\pi}{6} - \frac{\pi}{3} = -\frac{\pi}{6} \] This does not equal \( \frac{\pi}{2} \). Thus, the only valid solution is: \[ \boxed{0} \]

To solve the equation \( \sin^{-1}(1-x) - 2 \sin^{-1}(x) = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the equation to isolate \( \sin^{-1}(1-x) \): \[ \sin^{-1}(1-x) = \frac{\pi}{2} + 2 \sin^{-1}(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

sin^(-1)(1-x)-2sin^(-1)x=pi/2 , then x is equal to (A) 0,1/2 (B) 1,1/2 (C) 0 (D) 1/2

sin^(-1)(1-x)-2sin^(-1)x=pi/2 , then x is equal to (A) 0,1/2 (B) 1,1/2 (C) 0 (D) 1/2

Solve for x: sin^(-1)(1-x)-2sin^(-1)x=pi/2

If sin^(- 1)(3/x)+sin^(- 1)(4/x)=pi/2 then x=

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

If sin^(-1)x + cot^(-1)(1/2)=(pi)/2 then x is equal to

If sin^-1x + sin^-1(1-x) = sin^-1sqrt[1-x^2] ,then x is equal to