Home
Class 12
MATHS
tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y)is equa...

`tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y)`is equal to(A) `pi/2` (B) `pi/3` (C) `pi/4` (D) `(-3pi)/4`

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/(4)`

D

`(-3pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right) \), we can use the identity for the difference of two inverse tangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] where \( a = \frac{x}{y} \) and \( b = \frac{x-y}{x+y} \). ### Step 1: Identify \( a \) and \( b \) Let: \[ a = \frac{x}{y} \] \[ b = \frac{x-y}{x+y} \] ### Step 2: Calculate \( a - b \) Now, we need to calculate \( a - b \): \[ a - b = \frac{x}{y} - \frac{x-y}{x+y} \] To subtract these fractions, we need a common denominator: \[ = \frac{x(x+y) - y(x-y)}{y(x+y)} \] Now simplify the numerator: \[ = \frac{x^2 + xy - (yx - y^2)}{y(x+y)} = \frac{x^2 + xy - yx + y^2}{y(x+y)} = \frac{x^2 + y^2}{y(x+y)} \] ### Step 3: Calculate \( 1 + ab \) Next, we calculate \( 1 + ab \): \[ ab = \frac{x}{y} \cdot \frac{x-y}{x+y} = \frac{x(x-y)}{y(x+y)} = \frac{x^2 - xy}{y(x+y)} \] Thus, \[ 1 + ab = 1 + \frac{x^2 - xy}{y(x+y)} = \frac{y(x+y) + x^2 - xy}{y(x+y)} = \frac{yx + y^2 + x^2 - xy}{y(x+y)} = \frac{x^2 + y^2}{y(x+y)} \] ### Step 4: Substitute into the identity Now, we substitute \( a - b \) and \( 1 + ab \) into the identity: \[ \tan^{-1}\left(\frac{a - b}{1 + ab}\right) = \tan^{-1}\left(\frac{\frac{x^2 + y^2}{y(x+y)}}{\frac{x^2 + y^2}{y(x+y)}}\right) = \tan^{-1}(1) \] ### Step 5: Final Result Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we conclude that: \[ \tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right) = \frac{\pi}{4} \] Thus, the answer is \( \frac{\pi}{4} \), which corresponds to option (C).

To solve the expression \( \tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right) \), we can use the identity for the difference of two inverse tangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] where \( a = \frac{x}{y} \) and \( b = \frac{x-y}{x+y} \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

("lim")_(xvecoo)"{"x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to pi (b) 2pi (c) pi/2 (d) none of these

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to pi (b) pi/2 (c) 0 (d) none of these

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to pi (b) pi/2 (c) 0 (d) none of these

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to (a) pi (b) pi/2 (c) 0 (d) none of these

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to pi (b) pi/2 (c) 0 (d) none of these

The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to pi/4 b. (5pi)/(12) c. (3pi)/4 d. (13pi)/(12)