Home
Class 11
MATHS
If p=(sinA)/(sinB) and q=(cos A)/(cos B)...

If `p=(sinA)/(sinB)` and `q=(cos A)/(cos B)`

Text Solution

AI Generated Solution

To solve the problem where \( p = \frac{\sin A}{\sin B} \) and \( q = \frac{\cos A}{\cos B} \), we need to find the values of \( \tan A \) and \( \tan B \). ### Step-by-Step Solution: 1. **Express \(\sin A\) and \(\cos A\)**: From the given equations, we can express \(\sin A\) and \(\cos A\) in terms of \(\sin B\) and \(\cos B\): \[ \sin A = p \cdot \sin B \quad \text{(Equation 1)} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3A|12 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3B|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

If (sinA)/(sinB)=pa n d(cosA)/(cosB)=q , find tanAa n dtanBdot

In triangleABC , which is not right angled, if p=sinA sinB sinC = and q=cosA. cosB. cosC. Then the equation having roots tanA,tanB and tanC is

A and B are positive acute angles satisfying the equations 3cos^(2)A+2cos^(2)B=4 and (3sinA)/(sinB)=(2cosB)/(cosA) , then A+2B is equal to (a) pi/4 (b) pi/3 (c) pi/6 (d) pi/2

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

In sinA=sinB and cos A=cos B , then prove that sin((A-B)/2)=0

If sinA+sinB=a and cosA+cosB=b then prove that sin(A+B)=(2ab)/(a^2+b^2) and cos(A+B)=(b^2-a^2)/(a^2+b^2)

If (1+sinA)(1+sinB)(1+sinC)=(1-sinA) (1-sinB)(1-sinC)," then prove that "(1-sinA) (1-sinB)(1-sinC)=pmcosA.cosB.cosC .

If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)) , then the value of A+B is equal to

If sinA=sin^2B and 2cos^2A=3cos^2B then the triangle ABC is

If (1-sinA)(1-sinB)(1-sinC)=(1+sinA)(1+sinB)(1+sinC) , then show that each side is equal to +-cosAcosBcosC .