Home
Class 11
MATHS
0 < A ,B < pi/4 ,cos (A+B) =4/5, sin (A-...

`0 < A ,B < pi/4 ,cos (A+B) =4/5, sin (A-B) =5/13 => tan 2A=`

Text Solution

AI Generated Solution

To solve the problem step by step, we need to find the value of \( \tan 2A \) given that \( \cos(A + B) = \frac{4}{5} \) and \( \sin(A - B) = \frac{5}{13} \). ### Step 1: Find \( \tan(A + B) \) We know that: \[ \tan(A + B) = \frac{\sin(A + B)}{\cos(A + B)} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3A|12 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3B|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_( xto 0 ) (tan 2x)/x

lim_(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

If (xcos e c^2 30^0sec^2 45^0)/(8cos^2 45^0sin^2 60^0)=tan^2 60^0-tan^2 30^0, than x= (a) 1 (b) -1 (c) 2 (d) 0

Evaluate the following limits : Lim_(x to 0) (tan. 1/2x)/(3x)

Evaluate lim_(x to 0) (tan x + 4 tan 2x - 3tan 3x)/(x^(2) tan x)

In a triangle ABC, prove that (a) cos(A + B) + cos C = 0 (b) tan( (A+B)/2)= cot(C/ 2)

The value of the expression (tan^2 20^0-sin^2 20^0)/(tan^2 20^0+sin^2 20^0) is__________

The value of lim_(x to 0) (tan^2 3x)/(sqrt(5) - sqrt(4 + "sec" x)) is equal to

Evaluate lim_(xto0) (tan2x-x)/(3x-sinx).

Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix of order 2. Show that I+A=(I-A)[cosalpha-sinalphasinalphacosalpha] .