Home
Class 11
MATHS
Prove that cos^(2)(pi/8-A/2)-cos^(2)(pi/...

Prove that `cos^(2)(pi/8-A/2)-cos^(2)(pi/8+A/2)` = `sin(pi/4). sinA=1/sqrt(2)sinA`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3A|12 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3B|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin^2(pi/8+A/2)-sin^2(pi/8-A/2)=1/sqrt(2)sinA

Prove that sin^(2) (pi/6) + cos^(2) (pi/3) - tan^(2) (pi/4) = - (1)/(2)

Prove that: cos(pi/7)cos(2pi/7)cos(4pi/7)=-1/8,

Prove that: cos(pi/4+A)+cos(pi/4-A)=sqrt(2)cosA

Prove that 4cos((2pi)/7).cos(pi/7)-1=2cos((2pi)/7) .

Prove that: cos((3pi)/(4)+A)-cos((3pi)/(4)-A)=-sqrt(2)sinA

Prove that: cos(pi/7)cos((2pi)/7)cos((4pi)/7)=-1/8

Prove that: cos^(2)((pi)/(8)) + cos^(2)((3pi)/(8)) + cos^(2)((5pi)/(8))+ cos^(2)((7pi)/(8))=2

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

Prove that: cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin2theta