Home
Class 11
MATHS
Prove the following that: sin^2A=cos^2...

Prove the following that: `sin^2A=cos^2(A-B)+cos^2B-2cos(A-B)cosAcosBdot`

Text Solution

AI Generated Solution

To prove the equation \( \sin^2 A = \cos^2(A - B) + \cos^2 B - 2 \cos(A - B) \cos A \cos B \), we will start with the right-hand side (RHS) and manipulate it until we arrive at the left-hand side (LHS). ### Step-by-step Solution: 1. **Start with the RHS:** \[ \text{RHS} = \cos^2(A - B) + \cos^2 B - 2 \cos(A - B) \cos A \cos B \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3A|12 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3B|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin^2A=cos^2(A-B)+cos^2B-2cos(A-B)cosAcosBdot

Prove the following identities: tan^2A-tan^2B=(cos^2B-cos^2A)/(cos^2Bcos^2A)=(sin^2A-sin^2B)/(cos^2Acos^2B) (sinA-sinB)/(cosA+cosB)+(cosA-cosB)/(sinA+sinB)=0

In any triangle A B C , prove that following: \ (cos^2B-cos^2C)/(b+c)+(cos^2C-cos^2A)/(c+a)+(cos^2A-cos^2B)/(a+b)=0

In a DeltaA B C , prove the following : a\ cos A+b\ cos B+c cos C=2bsinA sin\ Cdot

Prove that: sin^2B=sin^2A+sin^2(A-B)-2sin A cos B sin(A-B)

Prove that in triangle A B C ,cos^2A+cos^2B-cos^2C=1-2sinAsinBcosCdot

Prove the following identities : (sin A + cos A)/ (sin A - cos A) + (sin A - cos A)/ (sin A + cos A) = (2)/ (2 sin^(2) A - 1)

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

Prove that: (sin(A+B)-2sinA+sin(A-B))/(cos(A+B)-2cosA+cos(A-B))= tanA