Home
Class 11
MATHS
Prove that: cos^4pi/8+cos^4(3pi)/8+cos^4...

Prove that: `cos^4pi/8+cos^4(3pi)/8+cos^4(5pi)/8+cos^4(7pi)/8=3/2`

Text Solution

Verified by Experts

LHS
`=cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)(5pi)/(8)+cos^(4)(7pi)/(8)`
`=cos^(4)pi/8+cos^(4)(3pi)/(8)+[cos(pi-(3pi)/8)]^(4) + [cos(pi-pi/8)]^(4)`
`=cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)pi/8`
`=2[cos^(4)pi/8+cos^(4)(3pi)/(8)]`
`=1/2[(2cos^(2)pi/8)^(2)+(2cos^(2)(3pi)/8)^(2)]`
`=1/2[(1+cospi/4)^(2)+(1+cos(3pi)/4)^(2)]` `(therefore 2cos^(2)theta=1+cos2theta)`
`=1/2[(1+1/sqrt(2))^(2){1+cos(pi-pi/4)}^(2)]`
`=1/2[(1+1/sqrt(2))^(2)+(1-cospi/4)^(2)]`
`=1/2[(1+1/sqrt(2))^(2)+(1-1/sqrt(2))^(2)]`
`=1/2[1/2+2/sqrt(2)+2/sqrt(2)+1+1/sqrt(2)-2/sqrt(2)]`
`=3/2`= RHS Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3A|12 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3B|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

Prove that: cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=3/2

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

Prove that: sin^4(pi/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

Prove that: cos(pi/7)cos((2pi)/7)cos((4pi)/7)=-1/8

Prove that: cos(pi/7)cos(2pi/7)cos(4pi/7)=-1/8,

Statement I : sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2 Statement II sin^4pi/8+sin^4 (3pi)/8+sin^4(5pi)/8sin^4(7pi)/8=3/2

Prove that: cos(pi/5)cos((2pi)/5)cos((4pi)/5)cos((8pi)/5)=(-1)/16

Prove that "cos"(pi)/9."cos"(2pi)/9."cos"(3pi)/9."cos"(4pi)/9=1/(2^(4))