Home
Class 11
MATHS
The value of cos^2 48^0-sin^2 12^0 is (s...

The value of `cos^2 48^0-sin^2 12^0` is `(sqrt(5)+1)/8` (b) `(sqrt(5)-1)/8` (c) `(sqrt(5)+1)/5` (d) `(sqrt(5)+1)/(2sqrt(2))`

Text Solution

Verified by Experts

LHS `=cos^(2)48^(@)-sin^(2)12^(@)`
`=cos(48^(@)+12^(@))cos(48^(@)-12^(@))`
`=cos60^(@)cos36^(@)`
`=1/2 xx (sqrt(5)+1)/(8)=`RHS Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3A|12 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3B|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos^2 48^0-sin^2 12^0=(sqrt(5)+1)/8

Which of the following is the value of sin 27^0-cos 27^0? (a) -(sqrt(3-sqrt(5)))/2 (b) (sqrt(5-sqrt(5)))/2 (c) -(sqrt(5)-1)/(2sqrt(2)) (d) none of these

Prove that: sin^2 42^0-cos^2 78^0=(sqrt(5)+1)/8

The value of sin(1/4sin^(-1)((sqrt(63))/8)) is (a) 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that sin^2 48^@ - cos^2 12^@ = - (sqrt(5) +1)/8

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

cos ^(2) 48^(@) - sin ^(2) 12 ^(@) = (sqrt5+1)/(8).