Home
Class 11
MATHS
Solve tan2x=-cot(x+pi/3)...

Solve `tan2x=-cot(x+pi/3)`

Text Solution

AI Generated Solution

To solve the equation \( \tan(2x) = -\cot\left(x + \frac{\pi}{3}\right) \), we can follow these steps: ### Step 1: Rewrite the cotangent function We know that \( \cot \theta = \frac{1}{\tan \theta} \). Therefore, we can rewrite the equation as: \[ \tan(2x) = -\cot\left(x + \frac{\pi}{3}\right) = -\frac{1}{\tan\left(x + \frac{\pi}{3}\right)} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3A|12 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3B|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Solve the trigonometric equation : tan 2x = - cot (x+pi/3)

Solve the equation tan 2x = -cot (x+pi/6) .

Find the solution of tan2x = -cot(x+π/3).

Solve: tan2x−tan3x=0

Solve: tan 3x = cot 5x , ( 0 lt x lt 2pi).

Solve : 2+tan x. cot\ (x)/(2)+cot x. tan\ (x)/(2)=0 .

Solve: tan^(-1)x+2cot^(-1)x=(2pi)/3

Solve 2 cot 2x -3 cot 3x = tan 2x .

Solve (tan^(2) x+2sqrt(3) tan x+7) (cot^(2) y-2 sqrt(3) cot y+8) le 20 for x and y.

Solve: tan ^ (-1)tan((2pi)/3))