Home
Class 11
MATHS
In DeltaABC, prove that: a(cos^(2)C/2-...

In `DeltaABC`, prove that:
`a(cos^(2)C/2-cos^(2)B/2)=(b-c).cos^(2)A/2`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that in triangle \( \Delta ABC \): \[ a \left( \cos^2 \frac{C}{2} - \cos^2 \frac{B}{2} \right) = (b - c) \cos^2 \frac{A}{2} \] we will start with the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step 1: Write down the LHS We start with the left-hand side: \[ \text{LHS} = a \left( \cos^2 \frac{C}{2} - \cos^2 \frac{B}{2} \right) \] ### Step 2: Use the half-angle formula for cosine Recall the half-angle formula for cosine: \[ \cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}, \quad \cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ac}}, \quad \cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}} \] where \( s = \frac{a + b + c}{2} \) is the semi-perimeter of the triangle. ### Step 3: Substitute the half-angle formulas into the LHS Substituting the half-angle formulas into the LHS: \[ \text{LHS} = a \left( \frac{s(s-c)}{ab} - \frac{s(s-b)}{ac} \right) \] ### Step 4: Simplify the expression Now, we can simplify the expression: \[ \text{LHS} = a \left( \frac{s(s-c) \cdot c - s(s-b) \cdot b}{abc} \right) \] This can be rewritten as: \[ \text{LHS} = \frac{a s \left( c(s-c) - b(s-b) \right)}{abc} \] ### Step 5: Factor out common terms Now, we can factor out \( s \): \[ \text{LHS} = \frac{s \left( ac - ab + bc - b^2 \right)}{bc} \] ### Step 6: Use the semi-perimeter definition Since \( s = \frac{a + b + c}{2} \), we can express the terms in the numerator in terms of \( s \): \[ \text{LHS} = \frac{s(b - c)(s - a)}{bc} \] ### Step 7: Relate to the RHS Now, we can relate this to the right-hand side: \[ \text{RHS} = (b - c) \cos^2 \frac{A}{2} \] Using the half-angle formula for \( \cos^2 \frac{A}{2} \): \[ \cos^2 \frac{A}{2} = \frac{s(s-a)}{bc} \] Thus, we can write: \[ \text{RHS} = (b - c) \cdot \frac{s(s-a)}{bc} \] ### Step 8: Conclude the proof Since both sides are equal: \[ \text{LHS} = \text{RHS} \] Thus, we have proved that: \[ a \left( \cos^2 \frac{C}{2} - \cos^2 \frac{B}{2} \right) = (b - c) \cos^2 \frac{A}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3A|12 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3B|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC , prove that: (bcos^(2)C)/2+(c cos^(2)B)/2=s

In DeltaABC , prove that: a(cosC-cosB)=2(b-c)cos^(2)A/2

In DeltaABC , prove that: b(cosA-cosC)=2(c-a)cos^(2)B/2

In DeltaABC , prove that: (b-c)^(2)cos^(2)A/2+(b+c)^(2)sin^(2)A/2=a^(2)

In DeltaABC , prove that: (b-c)/acos^(2)A/2+(c-a)/(b)cos^(2)B/2+(a-b)/(c ).cos^(2)C/2=0

In DeltaABC , prove that: (b+c)cos(B+C)/(2)=acos(B-C)/(2)

In any DeltaABC , prove that a(cosC-cosB)=2(b-c)cos^(2)""1/2A

In any DeltaABC , prove that : (cos^2(A/2))/a + (cos^2(B/2))/b + (cos^2(C/2))/c = s^2/(abc)

In any DeltaABC , prove that (cos2A)/a^(2)-(cos2B)/b^(2)=1/a^(2)-1/b^(2)

In any DeltaABC , prove that (a-b)^(2)cos^(2)(C/2)+(a+b)^(2)sin^(2)(C /2)=c^(2) .