Home
Class 11
MATHS
If the sides a , b and c of A B C are in...

If the sides `a , b and c of A B C` are in `AdotPdot,` prove that `2sinA/2sinC/2=sinB/2`

Text Solution

Verified by Experts

Let `2sinA/2.sinC/2=sinB/2`
`rArr 2sqrt((s-b)(s-c))/(bc).sqrt((s-a)(s-b))/(ab)=sqrt((s-a)(s-c))/(ac)`
`rArr 2(s-b)/b.sqrt((s-a)(s-c))/(ac)=sqrt((s-a)(s-c))/(ac)`
`rArr 2(s-b)/(b)=1`
`rArr 2s-2b=b`
`rArr a+b+c-2b=b`
`rArr a+c=2b`
`rArr a+c=2b`
`rArr` a,b,c are in A.P.
Which is given.
Therefore, `2sinA/2.sinC/2=sinB/2`, if a,b,c are in A.P. Hence proved.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3A|12 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3B|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

If the sides a , ba n dCof A B C are in AdotPdot, prove that 2sinA/2sinC/2=sinB/2, acos^2C/2+cos^2A/2=(3b)/2

If sides a , b , c of the triangle A B C are in AdotPdot , then prove that sin^2A/2cos e c\ 2A ;sin^2B/2cos e c\ 2B\ ;sin^2C/2cos e c\ 2C are in H.P.

In DeltaABC , prove that: sinB+sinC gt sinA

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

In DeltaABC , prove that: sinA+sinB-sinC=4sinA/2sinB/2cosC/2

In sinA=sinB and cos A=cos B , then prove that sin((A-B)/2)=0

In DeltaABC , Prove that: cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2

If A+B+C = pi , prove that : cosA+cosB + cosC = 1+4sinA/2sinB/2sinC/2 .

In a triangle A B C , prove by vector method that a/(sinA)=b/(sinB)=c/(sinC)

If A+B+C=180 , prove that: sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)