Home
Class 11
MATHS
If secA=-2 and A lies in third quadrant,...

If `secA=-2` and A lies in third quadrant, find the value of `(4 cot^(2)A-3sin^(2)A)`.

A

`11/12`

B

`-11/12`

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( 4 \cot^2 A - 3 \sin^2 A \) given that \( \sec A = -2 \) and \( A \) lies in the third quadrant. ### Step 1: Find \( \cos A \) Since \( \sec A = \frac{1}{\cos A} \), we can find \( \cos A \): \[ \cos A = \frac{1}{\sec A} = \frac{1}{-2} = -\frac{1}{2} \] **Hint**: Remember that secant is the reciprocal of cosine. ### Step 2: Find \( \sin^2 A \) Using the Pythagorean identity \( \sin^2 A + \cos^2 A = 1 \), we can find \( \sin^2 A \): \[ \sin^2 A = 1 - \cos^2 A = 1 - \left(-\frac{1}{2}\right)^2 = 1 - \frac{1}{4} = \frac{3}{4} \] **Hint**: Always check the quadrant to determine the sign of sine. ### Step 3: Find \( \sin A \) Since \( A \) is in the third quadrant, where sine is negative: \[ \sin A = -\sqrt{\sin^2 A} = -\sqrt{\frac{3}{4}} = -\frac{\sqrt{3}}{2} \] **Hint**: The sine function is negative in the third quadrant. ### Step 4: Find \( \cot A \) Using the definition of cotangent: \[ \cot A = \frac{\cos A}{\sin A} = \frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} \] **Hint**: Cotangent is the ratio of cosine to sine. ### Step 5: Calculate \( \cot^2 A \) and \( \sin^2 A \) Now we calculate \( \cot^2 A \): \[ \cot^2 A = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] ### Step 6: Substitute values into the expression Now we can substitute \( \cot^2 A \) and \( \sin^2 A \) into the expression \( 4 \cot^2 A - 3 \sin^2 A \): \[ 4 \cot^2 A - 3 \sin^2 A = 4 \left(\frac{1}{3}\right) - 3 \left(\frac{3}{4}\right) \] Calculating each term: \[ = \frac{4}{3} - \frac{9}{4} \] ### Step 7: Find a common denominator and simplify The common denominator for \( \frac{4}{3} \) and \( \frac{9}{4} \) is 12: \[ = \frac{4 \times 4}{12} - \frac{9 \times 3}{12} = \frac{16}{12} - \frac{27}{12} = \frac{16 - 27}{12} = \frac{-11}{12} \] ### Final Result Thus, the value of \( 4 \cot^2 A - 3 \sin^2 A \) is: \[ \boxed{-\frac{11}{12}} \]

To solve the problem step by step, we need to find the value of \( 4 \cot^2 A - 3 \sin^2 A \) given that \( \sec A = -2 \) and \( A \) lies in the third quadrant. ### Step 1: Find \( \cos A \) Since \( \sec A = \frac{1}{\cos A} \), we can find \( \cos A \): \[ \cos A = \frac{1}{\sec A} = \frac{1}{-2} = -\frac{1}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3D|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3E|19 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3B|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

If sinA=-4/5 and A lies in 3rd quadrant, find the values of (i) sin2A ii) cos2A .

If cos x=\ -3/5a n d\ x lies in the IIIrd quadrant, find the values of cos(x/2),sin(x/2)a n d\ sin2xdot

Find the value of cot^(-1)3/4+sin^(-1)5/(13)

Find the value of sin(1/2cot^(-1)(-3/4))

If sinx=(sqrt(5))/3a n d\ x lies in IInd quadrant, find the values of cos(x/2),sin(x/2)a n d tan(x/2)dot

If "sin"theta=-4/(5) and theta lies in third quadrant, then the value of "cos"theta/(2) is

if tanx=-4/3,x lies in Il quadrant, then find the value of sin(x/2)

If cos A = 4 sin A , find the value of , 4 cos ^(2) A - 3 sin ^(2) A + 2

If sinalpha=-(3)/(5) and alpha lies in the third quadrant then find the value of cos.(alpha)/(2)

If sintheta=(-4)/(5) and theta lies in third quadrant, then the value of cos""(theta)/(2) is

NAGEEN PRAKASHAN ENGLISH-TRIGNOMETRIC FUNCTIONS-EXERCISES 3C
  1. If sinA=-3/5 and A lies in third quadrant, find the remaining trignome...

    Text Solution

    |

  2. If cosA=5/13 and A lies in fourth quadrant, find the remaining trigno...

    Text Solution

    |

  3. If tanA=-12/5 and A lies in second quadrant, find the remaining trigno...

    Text Solution

    |

  4. If cotA=4/3 and A lies in third quadrant, find the remaining trignomet...

    Text Solution

    |

  5. If secA=-17/8 and A lies in second quadrant, find the remaining trigno...

    Text Solution

    |

  6. If "cosec"A=5/4 and A lies in first quadrant, find the remaining trign...

    Text Solution

    |

  7. If "cosec"A=-sqrt(2) and (3pi)/(2) lt A lt 2pi, find the value of (tan...

    Text Solution

    |

  8. If secA=-2 and A lies in third quadrant, find the value of (4 cot^(2)A...

    Text Solution

    |

  9. Prove that: sqrt((1+cosA)/(1-cosA))={:("cosec"A+cotA, if 0ltAltpi),(...

    Text Solution

    |

  10. Evaluate the following: i) tan135^(@) ii) sec150^(@) iii) cot240...

    Text Solution

    |

  11. Prove that: tan10^(@) tan20^(@)tan70^(@)tan80^(@)=1

    Text Solution

    |

  12. Prove that: (cos40^(@)+cos50^(@))/(sin40^(@)+sin50^(@))=1

    Text Solution

    |

  13. Prove that: "cosec"(270^(@)-A)"cosec"(270^(@)+A)+cot(270^(@)-A)cot(2...

    Text Solution

    |

  14. Prove that: sin ((pi)/(7))+sin((2pi)/(7)) + sin((8pi)/(7)) + sin((9p...

    Text Solution

    |

  15. Evaluate the following: i) cos120^(@)sin390^(@)+cos330^(@)cos150^(@)...

    Text Solution

    |

  16. Prove that: (cos(pi+A)cos(-A))/(sin(pi-A).cos(pi/2+A))=cot^(2)A

    Text Solution

    |

  17. In any quadrilateral ABCD, prove that: i) sin(A+B)+sin(C+D)=0 ii) ...

    Text Solution

    |

  18. Find the value of x: "cosec"(90^(@)+theta)+x costhetacot(90^(@)+theta)...

    Text Solution

    |