Home
Class 11
MATHS
find general value of theta : sintheta=-...

find general value of `theta` : `sintheta=-1/2` and `costheta=-sqrt(3)/2`

Text Solution

AI Generated Solution

To find the general value of \( \theta \) for the equations \( \sin \theta = -\frac{1}{2} \) and \( \cos \theta = -\frac{\sqrt{3}}{2} \), we will solve each equation step by step. ### Step 1: Solve \( \sin \theta = -\frac{1}{2} \) We know that \( \sin \theta = -\frac{1}{2} \) corresponds to angles where the sine function is negative. The reference angle for \( \sin \theta = \frac{1}{2} \) is \( \frac{\pi}{6} \). Since sine is negative in the third and fourth quadrants, we can find the angles: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3N|42 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3O|24 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3L|10 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Find the general value of theta from the equation sintheta+costheta=sqrt(2)cosA.

Find the most general value of theta satisfyingn the equation tantheta=-1 and costheta=(1 )/(sqrt(2)) .

If 3tantheta=4 , find the value of (4costheta-sintheta)/(2costheta+sintheta)

If 3cottheta=4, find the value of (4costheta-sintheta)/(2costheta+sintheta) .

Find the general value of theta from the equaion sqrt(3)sintheta+costheta=1

Find the general values of theta from the following equations: i) sintheta=-sqrt(3)/(2) ii) sectheta=-sqrt(2) iii) cottheta=-1/sqrt(3) , iv) "cosec"theta=-2

Find the general value of theta from the equation costheta+cos2theta + cos3theta=0 .

Find the general values of theta satisying the following two equations: sintheta=1/sqrt(2) and sectheta=-sqrt(2)

Find the geneal values of theta from the following equations: i) sintheta=sqrt(3)/2 , ii) costheta=1/sqrt(2) , iii) tantheta=sqrt(3) , iv) sectheta=2/sqrt(3) , v) cottheta=1/sqrt(3) , vi) "cosec"theta=sqrt(2)

Find the general values of theta from the following equations: sintheta+costheta=(sqrt(3)+1)/(2)