Home
Class 11
MATHS
cot^2pi/6+cose c(5pi)/6+3tan^2pi/6=6...

`cot^2``pi/6``+cose c``(5pi)/6``+3tan^2``pi/6=6`

Text Solution

Verified by Experts

LHS `=cot^(2)pi/6 + "cosec"(5pi)/(6)+3tan^(2)pi/6`
`=cot^(2)pi/6+"cosec"(pi/6)+3(tanpi/6)^(2)`
`=(cot30^(@))^(2) + ("cosec"30^(@))+3(tan 30^(@))^(2)`
`=(sqrt(3))^(2)+2+3(1/sqrt(3))^(2)=3+2+1=6`
RHS Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.4|8 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.2|10 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

2sin^2 pi/6 +cose c^2 (7pi)/6 cos^2 pi/3=3/2

sin^2 pi/6 +cos^2 pi/3 -tan^2 pi/4=-1/2

2sin^2(pi/6 )+c o s e c^2((7pi)/6)cos^2(pi/3)=3/2

Prove that sin^(2) (pi/6) + cos^(2) (pi/3) - tan^(2) (pi/4) = - (1)/(2)

"sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)"

sin^(2) (pi/6)+cos^(2) (pi/3)-tan^(2) (pi/4)=-1/2

Prove that: 2sin^2(pi/6)+cosec^2((7pi)/6)cos^2(pi/3)=3/2

The number of solutions of the equation cos^2(x+pi/6)+cos^2x-2cos(x+pi/6)dotcospi/6=sin^2pi/6 in interval ((-pi)/2,pi/2) is_________

Prove that: sin ((8pi)/3) cos ((23pi)/6)+cos ((13pi)/3) sin ((35pi)/6)=1/2

The number of solutions of the equation cos^2(x+pi/6)+cos^2x-2cos(x+pi/6)dotcos(pi/6)=sin^2(pi/6) in interval ((-pi)/2,pi/2) is_________