Home
Class 11
MATHS
(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x)...

`(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x`

Text Solution

AI Generated Solution

To solve the equation \(\frac{\cos(\pi - x) \cos(-x)}{\sin(\pi - x) \cos\left(\frac{\pi}{2} + x\right)} = \cot^2 x\), we will use trigonometric identities to simplify the left-hand side step by step. ### Step 1: Use Trigonometric Identities We will apply the following trigonometric identities: 1. \(\cos(\pi - x) = -\cos x\) 2. \(\cos(-x) = \cos x\) 3. \(\sin(\pi - x) = \sin x\) 4. \(\cos\left(\frac{\pi}{2} + x\right) = -\sin x\) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.4|8 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.2|10 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^2x

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x)} =cot^2x

(cos (pi+x).cos(-x))/(sin(pi-x).cos(pi/2+x)) = cot^2x

Prove that: cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

Prove that: cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

Prove that: cos((3pi)/2+x)cos(2pi+x){cot((3pi)/2-x)+"cot"(2pi+x)}=1

lim_(xrarrpi//2)(cos((pi)/(2)sin^(2)x))/(cot((pi)/(2)sin^(2)x)) equals

The value of "cos"((3pi)/2+x)."cos"(2pi+x)["cot"((3pi)/(2)-x)+"cot"(2pi+x)] is

cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

int_(-pi/2)^(pi/2) sin x*cos^2 xdx