Home
Class 11
MATHS
Prove that: cos((3pi)/2+x)cos(2x+x)[cot(...

Prove that: `cos((3pi)/2+x)cos(2x+x)[cot((3pi)/2-x)+cot(2pi+x)]=1`

Text Solution

Verified by Experts

LHS `=cos((3pi)/(2)+x)cos(2pi+x)[(cos(3pi)/(2)-x)+cot(2pi+x)]`
`=sinx.cosx[tanx+cotx]`
`sinx.cosx[(sinx)/(cosx)+(cosx)/(sinx)]`
`=sin^(2)x+cos^(2)x=1`= R.H.S Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.4|8 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.2|10 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

Prove that: cos((3pi)/2+x)cos(2pi+x){cot((3pi)/2-x)+"cot"(2pi+x)}=1

The value of "cos"((3pi)/2+x)."cos"(2pi+x)["cot"((3pi)/(2)-x)+"cot"(2pi+x)] is

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x)} =cot^2x

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x\ )=sqrt(2)sinx

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^2x

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

Prove that cos^(3)x+cos^(3)((2pi)/3+x)+cos^(3)((2pi)/3-x)=3/4 cos 3x