`secx=2`

Text Solution

Verified by Experts

`secx = 2=secpi/3` or `sec(2pi-pi/3)`
`rArr x=pi/3` or `(2pi-pi/3)`
`rArr x=pi/3`or `(5pi)/(3)`
Therefore, principal solution of equation `secx=2` is `x=pi/3` or `(5pi)/(3)`.
`secx=2`
`1/(cosx)=2`
`cosx=1/2=cos60^(@)`
`cosx=cospi/3`
and general solution is `x=2npi+-pi/3, n in Z` Ans.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.3|25 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Solve secx-1=(sqrt(2)-1)tanx

Solve the equation, 1+secx = 8tan^(2)(x/2)

The solution of the differential equation dy/dx + y/2 secx = tanx/(2y), where 0 <= x < pi/2, and y(0)=1, is given by

If secx=sqrt(2) and x does not lie in the 1^(st) quadrant, find the value of (1+tanx+" cosec "x)/(1+cot x-" cosec "x) .

Solution of the differential equation cosx dy= y(sinx -y)dx , 0 lt x lt pi/2 (A) secx=(tanx+c)y (B) ysecx=tanx+c (C) ytanx=secx+c (D) tanx=(secx+c)y

sqrt(secx)

intdx/(1+secx)

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

Prove that 1/(secx-tanx)+1/(secx+tanx)=2/(cosx)