Home
Class 11
MATHS
sin2x+cosx=0...

`sin2x+cosx=0`

Text Solution

Verified by Experts

Given equation:
`sin2x+cosx=0`,
or `2sinxcosx+cosx=0`,
or `cosx(2sinx+1)=0`
`rArr cosx=0` or `2sinx+1=0`
If `cosx=0` then `x=(2n+1)pi/2`, where `n in z`, and `2sinx+1=0, rArr sinx=-1/2=sin(pi+pi/6)`
`rArr sinx=sin(pi + pi/6)`
`rArr sinx=sin(7pi)/(6)`
`rArr x=npi+(-1)^(n)(7pi)/(6)`, where `n in Z`
Therefore, the general solution of given equation is
`x=npi+(-1)^(n)(7pi)/(6)` or `(2n+1)pi/2, n in Z` Ans.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.3|25 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

int_(0)^(pi/6) sin2x . cosx dx

Recall that sinx + cosx =u (say) and sin x cosx =v (say) are connected by (sinx +cosx)^(2) = sin^(2)x + cos^(2)x+2sin cosx rArr u^(2) = 1+2v rArr v=(u^(2)-1)/(2) It follows that any rational integral function of sinx + cosx , and sinx cosx i.e., R(sinx + cosx, sinx cosx) , or in our notation R(u,v) can be transformed to R(u, (u^(2)-1)/2) . Thus, to solve an equation of the form R(u,v)=0 , we form a polynomial equation in u and than look for solutions. The solution set of sinx + cosx -2sqrt(2) sin x cosx=0 is completely described by

If (sinx-cosx)= 0 then find (sin^3 x- cos^3x)

Let f(x)=|(2cos^2x,sin2x,-sinx),(sin2x,2sin^2x,cosx),(sinx,-cosx,0)| . Then the value of int_0^(pi//2)[f(x)+f^(prime)(x)]dx is a. pi b. pi//2 c. 2pi d. 3pi//2

Solve for x: sin2x+sinx +cos2x+cosx +1 =0

Evaluate: int_0^(pi//2)(sin x-cosx)/(1+sin x cosx)dx

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

If f(x) = \begin{vmatrix} cos2x & cos2x & sin2x \\ -cosx & cosx & -sinx\\ sinx & sinx & cosx \end{vmatrix} then

Find the area of the region enclosed by the given curves . y=cosx , y=sin2x , x=0, x=(pi)/(2)