Home
Class 10
MATHS
Ii DeltaPQR, PDbotQR such that D lies on...

Ii `DeltaPQR`, PD`bot`QR such that D lies on QR, if PQ=a,PR=b,QD=c and DR=d, then prove that (a+b)(a-b)=(c+d)(c-d).

Text Solution

Verified by Experts

Given: In `trianglePQR, PD bot QR, so angle1= angle2`
PQ=a,PR=b,QD=c and DR=d
To prove: (a+b) (a-b) = (c+d) (c-d)
Proof : in right angle `trianglePDQ`
`PD^(2)= PQ^(2)-QD^(2)` (by pythagoras theorem)
` Rightarrow " " PD^(2)=a^(2) -c^(2)` ...(1)
similarlym in right angled `trianglePDR`
`PD^(2)= PR^(2)-DR^(2)` ( by pythagoras theorem) (by pythagoras theorem )
`PD^(2) = b^(2)-d ^(2)`
From (1) and (2) ,we have
`a^(2)-c^(2)= b^(2)-d^(2)`
`a^(2)-b^(2) = c^(2) -d^(2)`
(a-b) (a+b) = (c-d) (c+d) Hence proved.
Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6a|24 Videos
  • TRIANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Eercise 6b|1 Videos
  • TRIANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Questions|1 Videos
  • STATISTICS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos
  • VOLUME AND SURFACE AREA OF SOLIDS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revisions Exercise Long Answer Questions|5 Videos

Similar Questions

Explore conceptually related problems

If a ,b,c , d are in G.P. prove that (b + c)(b + d) = (c + a)(c+d)

If a ,b ,c ,d are in G.P. prove that: (a b-c d)/(b^2-c^2)=(a+c)/b

In A B C , if B D_|_A C and B C^2=2\ A C C D , then prove that A B=A C .

In Fig. 5.10, if A C=B D , then prove that A B=C D .

If a ,b,c , d are in G.P. prove that (a-d)^(2) = (b -c)^(2)+(c-a)^(2) + (d-b)^(2)

In A B C , ray A D bisects /_A and intersects B C in D . If B C=a , A C=b and A B=c , prove that B D=(a c)/(b+c) (ii) D C = (a b)/(b+c)

If a, b, c and d are four coplanr points, then prove that [a b c]=[b c d]+[a b d]+[c a d] .

In figure /_A C B=90^@ and C D_|_A B . Prove that (B C^2)/(A C^2)=(B D)/(A D) .

In Figure, /_A C B=90dot and C D_|_A B . Prove that (C B^2)/(C A^2)=(B D)/(A D)

In Figure, it is given that A B=C D\ a n d\ A D=B Cdot Prove that A D C~=C B A