Home
Class 12
MATHS
Show that the function f(x) = log cos x ...

Show that the function `f(x) = log cos x ` is :
(i) Strictly decreasing in `]0,pi/2[`
(ii) Strictly increasing in `]pi/2, pi [`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the function f(x) = 3 - 2x is strictly decreasing function on R.

Prove that the function f given by f (x) = log cos x is strictly decreasing on (0,pi/2) and strictly increasing on (pi/2,pi) prove that the function f given by f(x) = log sin x is strictly decreasing on ( 0 , pi/2) and strictly increasing on ( pi/2 , pi) ..

Show that the function f(x) =- 5x + 2 is strictly decreasing function on R.

Show that the function f(x) = log (sin x) (i) is strictly increasing in the interval ]0,pi/2[ . (ii) is strictly decreasing in the interval ]pi/2,pi[ .

Prove that the function given by f(x) = cos x is(a) strictly decreasing in (0,pi) (b) strictly increasing in (pi,2pi) , and(c) neither increasing nor decreasing in (0,2pi)

Prove that the function f(x)=cosx is strictly decreasing in (0,\ pi)

Show that the function f(x) = 3x + 2 is strictly increasing function on R.

Prove that function given by f(x)=sin x is (i) Strictly increasing in (-(pi)/(2),(pi)/(2)) (ii) Strictly decreasing in ((pi)/(2),(3pi)/(2))

Prove that the function f(x)=cosx is strictly increasing in (pi,\ 2pi)

Show that the function f(x)=x^2 is a strictly decreasing function on (-oo,\ 0) .