Home
Class 12
MATHS
int(x^(2)+1)/(x^(4)-2x^(2)+1)dx...

`int(x^(2)+1)/(x^(4)-2x^(2)+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x^2 + 1}{x^4 - 2x^2 + 1} \, dx\), we can follow these steps: ### Step 1: Simplify the Denominator The denominator \(x^4 - 2x^2 + 1\) can be factored. Notice that it can be rewritten as: \[ x^4 - 2x^2 + 1 = (x^2 - 1)^2 \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral as: \[ \int \frac{x^2 + 1}{(x^2 - 1)^2} \, dx \] ### Step 3: Manipulate the Numerator Next, we can manipulate the numerator \(x^2 + 1\) by adding and subtracting \(2x\): \[ x^2 + 1 = (x^2 - 2x + 2x + 1) = (x^2 - 2x) + (2x + 1) \] Thus, we can rewrite the integral as: \[ \int \frac{(x^2 - 2x) + (2x + 1)}{(x^2 - 1)^2} \, dx \] ### Step 4: Separate the Integral Now, we can separate the integral into two parts: \[ \int \frac{x^2 - 2x}{(x^2 - 1)^2} \, dx + \int \frac{2x + 1}{(x^2 - 1)^2} \, dx \] ### Step 5: Factor the Denominator Recognize that \(x^2 - 1\) can be factored as \((x - 1)(x + 1)\). Thus, we can rewrite the integrals: \[ \int \frac{x^2 - 2x}{(x - 1)^2 (x + 1)^2} \, dx + \int \frac{2x + 1}{(x - 1)^2 (x + 1)^2} \, dx \] ### Step 6: Simplify the First Integral For the first integral: \[ \int \frac{x^2 - 2x}{(x^2 - 1)^2} \, dx = \int \frac{(x - 1)^2}{(x^2 - 1)^2} \, dx \] This simplifies to: \[ \int \frac{1}{x + 1} \, dx \] ### Step 7: Solve the Integrals Now, we can solve each integral: 1. For \(\int \frac{1}{x + 1} \, dx\): \[ = \ln |x + 1| + C_1 \] 2. For \(\int \frac{2x + 1}{(x^2 - 1)^2} \, dx\): We can use substitution \(u = x^2 - 1\), \(du = 2x \, dx\): \[ = \int \frac{1}{u^2} \, du = -\frac{1}{u} + C_2 = -\frac{1}{x^2 - 1} + C_2 \] ### Step 8: Combine the Results Combining the results from both integrals, we get: \[ \int \frac{x^2 + 1}{(x^2 - 1)^2} \, dx = \ln |x + 1| - \frac{1}{x^2 - 1} + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^2 + 1}{(x^2 - 1)^2} \, dx = \ln |x + 1| - \frac{1}{x^2 - 1} + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

The value of int((x^(2)+1))/((x^(4)-x^(2)+1)cot^(-1)(x-(1)/(x)))dx will be

int(x^2)/(1-x^4)dx

int (4x^(2) +x+1)/(x^(3) -1) dx=?

The value of int_(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

int_(0)^(2) (1)/(4+x+x^(2))dx

int(2x^(2)+4x+1)^(2)dx

int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1))dx=

Evaluate: int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx

int(x^2+1)/sqrt(x^2+4)dx

Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx