Home
Class 12
MATHS
Prove that : int(pi//4)^(3pi//4) (1)/(1+...

Prove that : `int_(pi//4)^(3pi//4) (1)/(1+cos x) dx = 2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(-pi//4)^(pi//4) log(sinx + cosx)\ dx = -pi/4\ log2.

int_(pi //4)^(3pi//4) (dx)/( 1+ cosx) is equal to

int_(0)^(pi//2) (1)/(4+3 cos x)dx

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

Prove that: int_(0)^(pi//2) (sinx)/(sinx +cos x)d dx =(pi)/(4)

int_(-pi//4)^(pi//4) ( dx)/( 1+cos 2x) is equal to

Prove that : int_(0)^(pi//2)(x)/(sin x +cos x)dx= (pi)/(4sqrt(2)) log |(sqrt(2)+1)/(sqrt(2)-1)|

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

int_(-pi/4)^(pi/4)(secx)/(1+2^(x))dx .

int_(0)^(pi//4)(dx)/((1+cos2x))