Home
Class 12
MATHS
Prove that : int(0)^(a) (dx)/(x+sqrt(a^(...

Prove that : `int_(0)^(a) (dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

Prove that: int_(-a)^(a) x^(3) sqrt(a^(2) -x^(2) ) dx=0

Prove that ln 2 lt int_(0)^(1)(dx)/(sqrt(1+x^(4))) lt (pi)/2)

Prove that: int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx =(pi)/(4)

Prove that : int_(0)^(a) (sqrt(x))/(sqrt(x)+sqrt(a-x))dx=(a)/(2)

Prove that : int_(0)^(pi) x cos^(2) x dx =(pi^(2))/(4)

Evaluate: int_0^a(x^4)/(sqrt(a^2-x^2))dx

Prove that :int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

Prove that : int_(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(2))/(2ab)

Prove that : int_(2)^(7) (sqrt(x))/(sqrt(9-x)+sqrt(x))dx=(5)/(2)