Home
Class 12
MATHS
Prove that :int(0)^(pi) (x)/(1 +sin^(2) ...

Prove that `:int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that : int_(0)^(pi) x cos^(2) x dx =(pi^(2))/(4)

Prove that : int_(0)^(pi) sin^(2) x . cos x dx =0

int_(0)^(pi) x sin^(2) x dx

Prove that : int_(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

int_(0)^(pi) x sin x cos^(2)x\ dx

Prove that : int_(0)^(pi//2)(x)/(sin x +cos x)dx= (pi)/(4sqrt(2)) log |(sqrt(2)+1)/(sqrt(2)-1)|

Prove that int_(0)^(pi/2) sin^(3) x dx=(2)/(3)

Prove that : int_(0)^(pi) sin^(2m) x. cos^(2m+1) x dx=0

int_(0)^( 2 pi)(dx)/(1+2^{sin x})