Home
Class 12
MATHS
Prove that :int(0)^(pi) (x sin x)/(1+sin...

Prove that :`int_(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that: int_0^(pi//2)(sin x)/(sinx-cosx)dx=pi/4

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .

Prove that: int_(0)^(pi//2) (sinx)/(sinx +cos x)d dx =(pi)/(4)

int_(0)^(pi) x log sinx dx

Prove that :int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

Prove that : int_(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

int_(0)^(pi) [2sin x]dx=

int_(0)^( pi)(dx)/(1+sin x)