Home
Class 12
MATHS
Prove that :int(0)^(1) (log x)/(sqrt(1-x...

Prove that :`int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

Prove that ln 2 lt int_(0)^(1)(dx)/(sqrt(1+x^(4))) lt (pi)/2)

Prove that: int_(-a)^(a) log ((2-x)/(2+x)) dx=0

int_(0)^(1)x log (1+2 x)dx

Prove that : int_(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log_(e) 2

Prove that : int_(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

solve int_(1)^(2)(log x)/(x^(2))dx

Prove that :int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

int_(1)^(2) (dx)/(x(1+log x)^(2))

Evaluate : int_(0)^(1)(log(1+x))/(1+x^2)dx