Home
Class 12
MATHS
Prove that :int(0)^(1)(sin^(-1)x)/(x) dx...

Prove that :`int_(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1) sin^(-1) x dx =(pi)/(2) -1

Prove that : int_(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

Prove that :int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that : int_(0)^(pi//2) x . cot x dx =(pi)/(2)log 2

Prove that : int_(0)^(pi) sin^(2) x . cos x dx =0

Prove that: int_(-a)^(a) log ((2-x)/(2+x)) dx=0

Prove that: int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx =(pi)/(4)

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)x dx

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2