Home
Class 12
MATHS
Prove that :int(0)^(oo) log (x+(1)/(x))....

Prove that :`int_(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log_(e) 2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_(-a)^(a) log ((2-x)/(2+x)) dx=0

int_(0)^(1)x log (1+2 x)dx

Prove that: int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx =(pi)/(4)

int_(0)^(pi) x log sinx dx

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

Evaluate int_(-1)^(1) log ((2-x)/( 2+x)) dx

int_(0)^(pi) x log sinx\ dx

Prove that : int_(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=