Home
Class 12
MATHS
int (1-sinx )/ (1-cos x) dx=?...

`int (1-sinx )/ (1-cos x) dx=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 - \sin x}{1 - \cos x} \, dx \), we can break it down into two parts. Let's denote the integral as \( I \). ### Step 1: Split the integral We can rewrite the integral as: \[ I = \int \left( \frac{1}{1 - \cos x} - \frac{\sin x}{1 - \cos x} \right) \, dx \] This gives us two separate integrals: \[ I = \int \frac{1}{1 - \cos x} \, dx - \int \frac{\sin x}{1 - \cos x} \, dx \] **Hint for Step 1:** Consider breaking the integral into simpler parts for easier integration. ### Step 2: Solve the first integral For the first integral \( \int \frac{1}{1 - \cos x} \, dx \), we can use the trigonometric identity: \[ 1 - \cos x = 2 \sin^2 \left( \frac{x}{2} \right) \] Thus, \[ \int \frac{1}{1 - \cos x} \, dx = \int \frac{1}{2 \sin^2 \left( \frac{x}{2} \right)} \, dx = \frac{1}{2} \int \csc^2 \left( \frac{x}{2} \right) \, dx \] The integral of \( \csc^2 \) is: \[ \int \csc^2 u \, du = -\cot u \] So, \[ \frac{1}{2} \int \csc^2 \left( \frac{x}{2} \right) \, dx = -\frac{1}{2} \cot \left( \frac{x}{2} \right) \] **Hint for Step 2:** Use trigonometric identities to simplify the integral. ### Step 3: Solve the second integral Now, we focus on the second integral \( \int \frac{\sin x}{1 - \cos x} \, dx \). We can use the substitution \( u = \cos x \), which gives \( du = -\sin x \, dx \) or \( \sin x \, dx = -du \). The integral becomes: \[ \int \frac{\sin x}{1 - \cos x} \, dx = -\int \frac{1}{1 - u} \, du \] The integral of \( \frac{1}{1 - u} \) is: \[ -\int \frac{1}{1 - u} \, du = -\log |1 - u| = -\log |1 - \cos x| \] **Hint for Step 3:** Use substitution to transform the integral into a simpler form. ### Step 4: Combine the results Now we can combine the results of the two integrals: \[ I = -\frac{1}{2} \cot \left( \frac{x}{2} \right) + \log |1 - \cos x| + C \] ### Step 5: Simplify the expression Using the identity \( 1 - \cos x = 2 \sin^2 \left( \frac{x}{2} \right) \), we can rewrite: \[ \log |1 - \cos x| = \log |2 \sin^2 \left( \frac{x}{2} \right)| = \log 2 + 2 \log |\sin \left( \frac{x}{2} \right)| \] Thus, the final expression for \( I \) becomes: \[ I = -\frac{1}{2} \cot \left( \frac{x}{2} \right) + \log 2 + 2 \log |\sin \left( \frac{x}{2} \right)| + C \] ### Final Answer The final answer for the integral is: \[ I = -\frac{1}{2} \cot \left( \frac{x}{2} \right) + 2 \log |\sin \left( \frac{x}{2} \right)| + \log 2 + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.2|39 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (1-cos x)/(1+cos x) dx=?

int(1)/(1-cos 2x) dx

int (2 - sinx)/(2 cos x ) dx

int sinx sqrt(1-cos 2x) dx

int(x-sinx)/(1-cosx)dx

int(x-sinx)/(1-cosx)dx

Evaluate: inte^x\ ((1-sinx)/(1-cosx))\ dx

Evaluate: int(x-sinx)/(1-cosx)dx

Evaluate: int(x-sinx)/(1-cosx)dx

Evaluate: inte^x((1-sinx)/(1-cosx))dx