Home
Class 12
MATHS
int (4x^(2) +x+1)/(x^(3) -1) dx=?...

`int (4x^(2) +x+1)/(x^(3) -1) dx=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{4x^2 + x + 1}{x^3 - 1} \, dx \), we can follow these steps: ### Step 1: Factor the Denominator The denominator \( x^3 - 1 \) can be factored using the formula for the difference of cubes: \[ x^3 - 1 = (x - 1)(x^2 + x + 1) \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral as: \[ \int \frac{4x^2 + x + 1}{(x - 1)(x^2 + x + 1)} \, dx \] ### Step 3: Partial Fraction Decomposition We can express the integrand using partial fractions: \[ \frac{4x^2 + x + 1}{(x - 1)(x^2 + x + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + x + 1} \] where \( A \), \( B \), and \( C \) are constants to be determined. ### Step 4: Clear the Denominator Multiply through by the denominator \( (x - 1)(x^2 + x + 1) \): \[ 4x^2 + x + 1 = A(x^2 + x + 1) + (Bx + C)(x - 1) \] ### Step 5: Expand and Combine Like Terms Expanding the right-hand side: \[ 4x^2 + x + 1 = A(x^2 + x + 1) + Bx^2 - Bx + Cx - C \] Combine like terms: \[ 4x^2 + x + 1 = (A + B)x^2 + (A - B + C)x + (A - C) \] ### Step 6: Set Up the System of Equations Now, we can set up a system of equations by comparing coefficients: 1. \( A + B = 4 \) (coefficient of \( x^2 \)) 2. \( A - B + C = 1 \) (coefficient of \( x \)) 3. \( A - C = 1 \) (constant term) ### Step 7: Solve the System of Equations From equation 3, we can express \( C \) in terms of \( A \): \[ C = A - 1 \] Substituting \( C \) into equation 2: \[ A - B + (A - 1) = 1 \implies 2A - B - 1 = 1 \implies 2A - B = 2 \implies B = 2A - 2 \] Now substituting \( B \) into equation 1: \[ A + (2A - 2) = 4 \implies 3A - 2 = 4 \implies 3A = 6 \implies A = 2 \] Now substituting \( A \) back to find \( B \) and \( C \): \[ B = 2(2) - 2 = 2 \] \[ C = 2 - 1 = 1 \] ### Step 8: Rewrite the Integral Now we can rewrite the integral: \[ \int \left( \frac{2}{x - 1} + \frac{2x + 1}{x^2 + x + 1} \right) \, dx \] ### Step 9: Integrate Each Term Now we can integrate each term separately: 1. \( \int \frac{2}{x - 1} \, dx = 2 \ln |x - 1| \) 2. For \( \int \frac{2x + 1}{x^2 + x + 1} \, dx \), we can use substitution: Let \( t = x^2 + x + 1 \), then \( dt = (2x + 1) \, dx \). Thus, \( \int \frac{2x + 1}{x^2 + x + 1} \, dx = \ln |t| + C = \ln |x^2 + x + 1| + C \). ### Step 10: Combine the Results Combining the results, we have: \[ \int \frac{4x^2 + x + 1}{x^3 - 1} \, dx = 2 \ln |x - 1| + \ln |x^2 + x + 1| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{4x^2 + x + 1}{x^3 - 1} \, dx = 2 \ln |x - 1| + \ln |x^2 + x + 1| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.2|39 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^(1/2))/(1+x^(3/4))dx

int(x^(3)-x^(2)+x-1)/(x-1)dx

int(2x^(2)+4x+1)^(2)dx

Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx

Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx

int(2x+1)/(x^(2)+4x-5)dx

int(3x+1)/(2x^(2)+x-1)dx

int((x+x^(3))^(1//3))/(x^(4))dx=

EVALUATE int (x^3 + 5x^2 + 4x +1)/x^3dx

int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1))dx=