Home
Class 12
MATHS
int(0)^(1//2) (x sin^(-1)x)/(sqrt(1-x^(2...

`int_(0)^(1//2) (x sin^(-1)x)/(sqrt(1-x^(2)))dx=?`

A

`-(pi sqrt(3))/(12)+(1)/(2)`

B

`(pisqrt(3))/(12)-(1)/(2)`

C

`(pisqrt(3))/(12) -(1)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{1}{2}} \frac{x \sin^{-1}(x)}{\sqrt{1 - x^2}} \, dx, \] we will use the substitution \( x = \sin(\theta) \). ### Step 1: Substitution Let \( x = \sin(\theta) \). Then, we differentiate to find \( dx \): \[ dx = \cos(\theta) \, d\theta. \] ### Step 2: Change of Limits Now, we need to change the limits of integration. When \( x = 0 \): \[ \sin(\theta) = 0 \implies \theta = 0. \] When \( x = \frac{1}{2} \): \[ \sin(\theta) = \frac{1}{2} \implies \theta = \frac{\pi}{6}. \] Thus, the limits change from \( 0 \) to \( \frac{\pi}{6} \). ### Step 3: Rewrite the Integral Now substituting \( x \) and \( dx \) into the integral: \[ I = \int_{0}^{\frac{\pi}{6}} \frac{\sin(\theta) \sin^{-1}(\sin(\theta))}{\sqrt{1 - \sin^2(\theta)}} \cos(\theta) \, d\theta. \] Since \( \sin^{-1}(\sin(\theta)) = \theta \) and \( \sqrt{1 - \sin^2(\theta)} = \cos(\theta) \), we can simplify the integral: \[ I = \int_{0}^{\frac{\pi}{6}} \sin(\theta) \cdot \theta \cdot \cos(\theta) \, d\theta. \] ### Step 4: Simplifying the Integral Now, we can express the integral as: \[ I = \int_{0}^{\frac{\pi}{6}} \theta \sin(\theta) \cos(\theta) \, d\theta. \] ### Step 5: Integration by Parts We will use integration by parts, where we let: - \( u = \theta \) and \( dv = \sin(\theta) \cos(\theta) \, d\theta \). Then, we differentiate and integrate: - \( du = d\theta \) - \( v = \frac{1}{2} \sin^2(\theta) \) (since \( \sin(\theta) \cos(\theta) = \frac{1}{2} \sin(2\theta) \)) Using integration by parts: \[ I = \left[ \theta \cdot \frac{1}{2} \sin^2(\theta) \right]_{0}^{\frac{\pi}{6}} - \int_{0}^{\frac{\pi}{6}} \frac{1}{2} \sin^2(\theta) \, d\theta. \] ### Step 6: Evaluate the First Term Calculating the first term: \[ \left[ \theta \cdot \frac{1}{2} \sin^2(\theta) \right]_{0}^{\frac{\pi}{6}} = \frac{\pi}{6} \cdot \frac{1}{2} \left(\frac{1}{2}\right)^2 - 0 = \frac{\pi}{6} \cdot \frac{1}{8} = \frac{\pi}{48}. \] ### Step 7: Evaluate the Second Integral Now, we need to evaluate: \[ \int_{0}^{\frac{\pi}{6}} \frac{1}{2} \sin^2(\theta) \, d\theta. \] Using the identity \( \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \): \[ \int_{0}^{\frac{\pi}{6}} \frac{1}{2} \sin^2(\theta) \, d\theta = \frac{1}{4} \int_{0}^{\frac{\pi}{6}} (1 - \cos(2\theta)) \, d\theta = \frac{1}{4} \left[ \theta - \frac{1}{2} \sin(2\theta) \right]_{0}^{\frac{\pi}{6}}. \] Evaluating this gives: \[ \frac{1}{4} \left[ \frac{\pi}{6} - \frac{1}{2} \sin\left(\frac{\pi}{3}\right) \right] = \frac{1}{4} \left[ \frac{\pi}{6} - \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \right] = \frac{1}{4} \left[ \frac{\pi}{6} - \frac{\sqrt{3}}{4} \right]. \] ### Step 8: Combine Results Putting it all together: \[ I = \frac{\pi}{48} - \frac{1}{4} \left[ \frac{\pi}{6} - \frac{\sqrt{3}}{4} \right]. \] This simplifies to: \[ I = \frac{\pi}{48} - \frac{\pi}{24} + \frac{\sqrt{3}}{16}. \] ### Final Answer After simplifying, we get: \[ I = \frac{\sqrt{3}}{16} - \frac{\pi}{48}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.2|39 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx

Evaluate: int_(0)^(1//2) (sin^(-1)x)/((1-x^(2))^(3//2)) dx

int_0^(1/2) e^(sin^-1x)/sqrt(1-x^2)dx

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

int_-1^1 (x.sin^-1x)/(sqrt(1-x^2)) dx =2

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))

Find : int_0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)^(3/2))dx

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx