Home
Class 12
MATHS
sqrt(ax+b)...

`sqrt(ax+b)`

Text Solution

AI Generated Solution

To solve the integral of the function \( \sqrt{ax + b} \), we will follow these steps: ### Step 1: Set up the integral Let \( I = \int \sqrt{ax + b} \, dx \). ### Step 2: Make a substitution We will substitute \( t = ax + b \). Then, we differentiate both sides to find \( dx \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.3|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.4|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.1|22 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Prove that: 2^((sqrt((log)_a4sqrt(a b)+(log)_b4sqrt(a b))-sqrt((log)_a4sqrt(b/a)+(log)_b4sqrt(a/b))))dotsqrt((log)_a b)={2ifbgeqa >1 and 2^(log_a(b) if 1

If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) , then prove that b ^2-ax+b=0

if x = (sqrt(3a + 2b) + sqrt(3a - 2b))/(sqrt(3a + 2b) - sqrt(3a - 2b)) prove that : bx^(2) - 3ax + b = 0

If x = (sqrt(a + 3b) + sqrt(a - 3b))/ (sqrt(a + 3b) - sqrt(a - 3b)) prove that : 3bx^(2) - 2ax + 3b = 0 .

If f(x)=sqrt(ax)+(a^2)/(sqrt(ax)) , then f^ (a)=

Let L L ' be the latus rectum through the focus of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 and A ' be the farther vertex. If A ' L L ' is equilateral, then the eccentricity of the hyperbola is (axes are coordinate axes). (a) sqrt(3) (b) sqrt(3)+1 ((sqrt(3)+1)/(sqrt(2))) (d) ((sqrt(3)+1))/(sqrt(3))

Let L L ' be the latus rectum through the focus of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 and A ' be the farther vertex. If A ' L L ' is equilateral, then the eccentricity of the hyperbola is (axes are coordinate axes). (a) sqrt(3) (b) sqrt(3)+1 (c) ((sqrt(3)+1)/(sqrt(2))) (d) ((sqrt(3)+1))/(sqrt(3))

Evaluate the following limits : lim_( x to 0 ) (sqrt(1+ax) - sqrt(1-ax))/x

Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+c))dx are claculated with the aid of one of the following three Euler substitutions: i. sqrt(ax^(2)+bx+c)=t+-x sqrt(a)if a gt 0 ii. sqrt(ax^(2)+bx+c)=tx+-x sqrt(c)if c gt 0 iii. sqrt(ax^(2)+bx+c)=(x-a)t if ax^(2)+bx+c=a(x-a)(x-b) i.e., if alpha is real root of ax^(2)+bx+c=0 (xdx)/(sqrt(7x-10-x^(2))^3) can be evaluated by substituting for x as

The family of anti-derivatives of f(x)=(1)/(ax^(2)+2sqrt(ab)x+b+1) is